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Chakarov, Aleksandar Nevenov (Ph.D., Computer Science)

Deductive Verification of Infinite-State Stochastic Systems using Martingales

Thesis directed by Prof. Sriram Sankaranarayanan

The focus of this dissertation is the analysis of and verification of discrete time stochastic

systems using martingales. Martingale theory yields a powerful set of tools that have recently been

used to prove quantitative properties of stochastic systems such as stochastic safety. In this thesis,

we focus on the analysis of qualitative trace properties of stochastic systems such as almost sure

reachability and termination, persistence and recurrence. An almost sure reachability property

♢(T ) states that with probability 1 the executions of the system reach a target set of states T . A

qualitative persistence property ♢□(T ) specifies that almost all executions of the stochastic system

eventually reach the target set T and stay there forever. Likewise, a recurrence property □♢(T )

specifies that a target set of states T is visited infinitely often by almost all executions of the

stochastic system.

For each type of property, we present deductive reasoning techniques in the form of proof rules

that rely on finding an appropriate certificate function to establish almost sure reachability, persis-

tence and recurrence properties of infinite-state, discrete time polynomial stochastic systems. Next,

we extend known efficient constraint-based and abstract interpretation-based invariant synthesis

techniques to deduce the necessary supermartingale expressions to partly mechanize such proofs.

We demonstrate that martingale certificates can serve as expectation invariants and generalize this

idea to sets of mutually inductive expectation invariants.

Finally, we explore the connection between the properties of our martingale certificates and

existing concentration of measure results to establish probability bounds on the quantitative version

of these properties.
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Chapter 1

Introduction

Probabilistic or stochastic systems are a modeling formalism used to describe complex pro-

cesses that arise in a multitude of areas: medical and financial decision making [150], stochastic

modeling [138] (climate change [90] and earthquake prediction models [155]), stochastic optimal

control [14], computer performance modeling and reliability [99], stochastic optimization [92], sensor

fusion algorithms [27], randomized algorithms [129], population and epidemiological modeling [45],

biochemical reactions and systems biology [31]. These systems all operate in the presence or under

the influence of some source of uncertainty that can be modeled quantitatively or estimated

empirically. Often the sources of uncertainty occur naturally due to physical limitations such as

imperfections in sensing and actuating equipment, incomplete information as in the case of indi-

vidual agents trading on the stock market, emerging collective behavior (the global economy); or

are intentionally introduced [129] to simulate the effects and evolutions of stochastic processes, to

overcome a difficulty of selecting an optimal strategy and break symmetries [92], to account for

noise in input data [16, 131], or to leverage performance [124] and privacy [62] gains at the expense

of accuracy.

Analysis and verification of such systems with respect to a set of target properties employs

formal mathematical tools to describe models, estimate probabilities or to prove that a property

holds during the operation of such a system. This is a challenging but important problem with

applications to areas such as risk assessment, safety and quality control.

Mathematical models based on Markov processes [142] have emerged as the preferred com-
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putational models for these systems. The main characteristic of Markov processes is that the

distribution over the next states is a function of the current system state, and does not explicitly

reference the history of states visited by the process since the beginning. Another characteristic of

Markov models is that they make a strong distinction between stochastic and nondeterministic

sources of uncertainty. Stochastic choice is a random decision among alternatives that is governed

by a probability distribution and, therefore, enjoys a number of statistical properties. In contrast,

nondeterministic choice need not obey results in probability theory such as the law of large num-

bers, the central limit theorem [40], or the concentration of measure phenomenon [60] but is instead

used to represent rational cooperative or adversarial behavior.

Depending on the choice of abstraction of the state space, or the set of values that the

model variables range over, timing behavior and presence of nondeterminism (unquantifiable

uncertainty) different variations of Markov processes have been formalized:

• Discrete Time Markov Chain (DTMC) is a stochastic model in which execution (time)

proceeds in discrete steps. Nondeterminism is precluded. State space is discrete and usually

finite [110, 66] but (countably) infinite state DTMCs exist [61].

• Continuous Time Markov Chain (CTMC) is a stochastic model in which state space

is discrete, time flows continuously, and execution remains within a state until a discrete

jump is taken at some specific time instance.

Example 1.0.1. Suppose we want to model a server application with finite buffer N that

accepts and processes requests based on empirical data stored in the server logs. By looking

at the sequence of events (arrivals, completions), we can model the server application as

a DTMC in which each state s, s ∈ {0, . . . , N}, represents the number of outstanding

requests. At each time step a new request arrives with transition probability t+ or an

existing request is processed with transition probability t− where probabilities of all outgoing

transitions from a state sum to 1.

Alternatively, by looking at the timestamps of incoming requests and time taken to process
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a request, we can build a CTMC exponential distribution model that best approximates the

empirical data. Using a CTMC model one can accurately model the flow of time as requests

come in at some transition rate t+ and are handled at rate t−.

Both Markov chain models can be visualized with the following state transition diagram:

where td = t+ denotes the probability (rate) of dropping a request due to a full buffer.

Some important questions one may ask when analyzing the system is: What is a safe

upper bound on the probability the server drops a request? Or, if the system

is currently in state K, for some 0 ≤ K ≤ N , for the next 1000 time steps

what fraction of the time does the system spend in expectation in suboptimal

conditions (outstanding requests below 0.1N or above 0.9N)? This is a sample of

the problems that both performance analysis and verification of probabilistic systems address.

• Markov Decision Process (MDP) is a stochastic model with discrete state space in

which time flows discretely and nondeterministic choice is allowed. This model is often

used in multi-agent settings to give game-theoretic (or turn-based) semantics [142].

A unifying approach to model these systems is to write them down in the form of probabilistic

programs [81]. A large number of probabilistic programming languages/formalisms have been

proposed including: BUGS [77], IBAL [136], STAN [30], Church [79], Figaro [137], Tabular [80],

R2 [134], and others [2]. We present most of our examples in the form of simple probabilistic

programs written in imperative style. These examples are easy to translate into many of the above

languages.

In this thesis we focus on the analysis of discrete time, infinite-state stochastic systems. The

evolution (or dynamics) of such systems is governed by polynomial difference equations over the
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system variables and well-defined noise terms. We analyze traces or trajectories of such systems

with focus on reachability and termination, as well as repeated reachability (persistence and

recurrence) properties. We phrase these properties as (probabilistic) assertions over the system

variables and often write as formulas in probabilistic branching time logic (PCTL).

The contributions of this thesis are in providing a deductive verification approach to reach-

ability and repeated reachability properties. We describe approaches to handle both qualitative

(probability 1) and quantitative (or, estimation) probabilistic assertions. We present two modifi-

cations of existing invariant generation techniques to find functions that certify the correctness of

the claims of probabilistic assertions. Finally, we demonstrate how our technique defines a class of

functions that is mutually invariant in expectation.

The core of our approaches is in identifying functions over the system states that act as

martingales over the sample runs of stochastic processes. Martingales are a class of particularly

well-behaved stochastic processes with constraints on their expected values and strong convergence

properties. The strengths of using martingales are many: (i) they allow us to reason symbolically

about distributions over system states; (ii) they act as invariants in expectation; (iii) they allow

us to prove progress towards and convergence to a set of system states with probability 1; and, (iv)

they allow us to leverage strong theoretical results on concentration of measure probability bounds

of probabilistic assertions.

Organization. The rest of this thesis is structured as follows. Chapter 2 presents the neces-

sary background information on probability theory, stochastic processes with focus on martingales,

the properties we analyze and the concentration of measure phenomenon. Chapter 3 presents

an overview of relevant analysis efforts by the formal methods and verification, model checking,

and program analysis communities. Chapter 4 presents a deductive proof technique that employs

martingale program expressions to establish qualitative, or almost sure, reachability and repeated

reachability properties. The soundness of the deductive proof rules is proved using convergence

properties of martingales. Chapter 5 presents a technique based on solving linear and semidefinite

constraints that generates supermartingale expressions. Chapter 6 demonstrates how martingale
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expressions can be used to prove probability bounds on the quantitative version of the properties of

interest. Chapter 7 extends the idea that a supermartingale expression constitutes an expectation

invariant to a set of program expressions that act as mutually inductive expectation invariants.

We show sets of such program expressions can be inferred automatically by defining an abstract

interpreter that operates over the moments of the reachable distributions of states. Chapter 8

presents open problems and directions for future research before concluding.



Chapter 2

Preliminaries

2.1 Probability Theory Basics.

Let Ω = {ω1, ω2, . . .} be a (potentially infinite) set of outcomes. A subset of outcomes

E ⊆ Ω is called an event and we denote by E ⊆ P(Ω) the set of all events. A collection E of

subsets of Ω (events) is called a σ-algebra on Ω if E :

(1) contains ∅ and Ω: ∅,Ω ∈ E ;

(2) is closed under complementation: Ei ∈ E =⇒ EC
i ∈ E , where EC

i ≜ Ω \ Ei;

(3) is closed under countable unions: let Ei ∈ E for all n ∈ N, then
∪∞

n=0Ei ∈ E .

From items (2) and (3) it follows that E is closed under countable intersections. A σ-algebra of

particular interest to us is the standard Borel σ-algebra.

Example 2.1.1 (Borel σ-algebra). Let Rn denote the standard n-dimensional Euclidean space. Let

d : R×R → [0,∞) denote the standard Euclidean distance function between any two points x, y in

Rn defined as: d(x, y) ≜
√∑n

i=1(xi − yi)2, where xi is the i-th coordinate of x.

Let x be a point in Rn and r > 0 then the open ball of radius r centered at x is the set

Br ≜ {y ∈ Rn : d(y, x) < r}. The collection B(Rn) of all open balls of Rn when closed under union,

intersection and complementation forms a σ-algebra. B(Rn) is called the standard Borel σ-algebra

and any set B ∈ B(Rn) is called a Borel set.
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A set of outcomes Ω and a σ-algebra E over Ω form a measurable space (Ω, E) — that is

a collection of “well-behaved” events on which we can impose a measure. A function µ : E → R is

called a measure if:

• µ(E) ≥ µ(∅) = 0 for all E ∈ E ;

• if {Ei}∞i=1 is a countable sequence of disjoint events in E (i.e., for any Ei, Ej in the sequence,

Ei ∩ Ej = ∅), then µ (
∪∞

i=1Ei) =
∑∞

i=1 µ(Ei).

A measure is therefore a nonnegative, countably additive function that assigns to each event its

corresponding measure. A measure µ is a probability measure (or probability distribution)

if µ(Ω) = 1. The set of support of µ is Supp(µ) ≜ {E ∈ E : µ(E) > 0}. A measurable space

(Ω, E) equipped with a probability measure P : E → [0, 1] forms a probability space (Ω, E , P ).

Let (Ω1, E1), (Ω2, E2) be measurable spaces, a function f : Ω1 → Ω2 is called measurable if

the preimage of every event E ∈ E2 belongs to E1:

f−1(E) ≜ {ω1 ∈ E1 | f(ω1) ∈ E} ∈ E1 for all E ∈ E2.

The function f is also called a measurable map from (Ω1, E1) to (Ω2, E2).

Random Variables. Let (Ω, E , P ) be a probability space and (S,S) be a measurable space.

If X is a measurable map from (Ω, E) to (S,S), then X is called an S-valued random variable.

If X can take on only countably many values then X is a discrete random variable; if X can take

on uncountably many values then X is a continuous random variable.

Example 2.1.2. If (S,S) = (R,B) then X is a real-valued (continuous) random variable. If X is

generalized to higher dimensions, that is, (S,S) = (Rn,B(Rn)) then X is called a random vector.

For random variable X, we abuse notion and denote the event X ∈ B for some B ∈ B to

mean {ω : X(ω) ∈ B}; additionally, X ≤ x denotes {ω : X(ω) ≤ x} (similarly for X = x, etc.).

We refer to FX(x) = P (X ≤ x) as the (cumulative) distribution function of X. If FX has the

form:

FX(x) =

∫ x

−∞
fX(u) du
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then we refer to fX(x) as the probability density function of X.

Given a set E ∈ E an important example of a random variable is the indicator function

1E(ω) : Ω → {0, 1}:

1E(ω) ≜


1, if ω ∈ E

0, otherwise

The continuous random variable X above induces a probability distribution

µX(B) = P ({ω : X(ω) ∈ B})

over the Borel sets of Rn.

A random variable X from (Ω, E) to (S,S) also induces a σ-algebra when all events B in

S are considered as a range for the mapping and closed under union and complementation. It is

called the σ-algebra generated by X, denoted σ(X), and defined as the collection of events:

σ(X) = {{ω : X(ω) ∈ B} : B ∈ S}.

Expected Value. Let X be a non-negative random variable on (Ω, E , P ). The expected

value (or the first moment) ofX is EX ≜
∫
XdP is always well-defined but may be∞. In general,

the i-th moment of X is mi(X) ≜
∫
XidP , for all i ∈ N. If X can take on negative values, we

define EX = EX+−EX− where X+ ≜ max{x, 0} is the positive part of X and X− ≜ min{−x, 0}.

The expectation EX is then said to exist if either EX+ <∞ or EX− <∞.

Theorem 2.1.1 (Jensen’s Inequality). Let φ be a convex function, that is,

λφ(x) + (1− λ)φ(y) ≥ φ(λx+ (1− λ)y)

for all λ ∈ (0, 1), x, y ∈ R. Then

φ(EX) ≤ E(φ(X))

provided that E|X| <∞ and E|φ(X)| <∞.
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Linearity of Expectation. Let X,Y be two random variables from (Ω, E , P ) to (S,S) and

let a, b, c ∈ R. We refer to the property

E(aX + bY + c) = aEX + bEY + c

as linearity of expectation provided the individual expectations EX, EY exist and are finite.

For two random variables X,Y from (Ω, E , P ) to (S,S), we define the conditional expec-

tation to be the random variable E(X |Y ∈ B) : Ω → S:

E(X |Y ∈ B) ≜
∫
B
XfY (y) dy for B ∈ S,

where fY (y) is the probability density of Y .

Independence. Given a probability space (Ω, E , P ), two eventsA,B ∈ E are independent

if P (A ∩B) = P (A)P (B). Two random variables X,Y are independent if for all Ei, Ej ∈ E ,

P (X ∈ Ei ∧ Y ∈ Ej) = P (X ∈ Ei)P (Y ∈ Ej),

or equivalently, if events A ≜ {X ∈ Ei} and B ≜ {Y ∈ Ej} are independent.

Finally, an important result [61] that allows the construction of countable probability spaces

by means of induction.

Theorem 2.1.2 (Kolmogorov’s Extension Theorem). Suppose we are given probability measures

µn on (Rn,B(Rn)) that are consistent, that is,

µn+1((a1, b1]× · · · × (an, bn]× R) = µn((a1, b1]× · · · × (an, bn])

Then there is a unique probability measure P on (RN,B(RN)) with

P (ω : ωi ∈ (ai, bi], 1 ≤ i ≤ n) = µn((a1, b1]× · · · × (an, bn]).

2.2 Stochastic Processes, Martingales and Markov Processes.

Let (Ω, E , P ) be a probability space, (S,S) be a measurable space, and T be a totally ordered

set. A stochastic process X = {Xt : t ∈ T} is a collection of S-valued random variables indexed
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by T (“time“). If T is a discrete set, i.e., T = {0, 1, 2, . . .} then we refer to X as a discrete time

stochastic process; if T is continuous, i.e., T = [0,∞) then we refer to X as a continuous time

stochastic process; if (S,S) = (R,B) we refer to X as a real-valued stochastic process.

Remark 1. In this thesis we focus on real-valued discrete time stochastic processes.

A set F ⊆ E is called a sub-σ-algebra if F is a σ-algebra. A family of increasing sub-σ-

algebras F0 ⊆ · · · ⊆ Fn ⊆ Fn+1 ⊆ · · · ⊆ E , n ≥ 0 is called a filtration. A stochastic process X is

said to be adapted to filtration Fn if Xn ∈ Fn for all n ≥ 0. One can think of Fn as containing

the information about all events that occur up to time n. That is Fn = σ(X0, . . . , Xn) is the

information available at time n. Thus, a filtration captures the information about the evolution of

the adapted stochastic process.

A stochastic process X has the Markov property if for every A ∈ S, n ∈ N,

P (Xn ∈ A | Fn−1) = P (Xn ∈ A |Xn−1 = xn−1),

i.e., the stochastic choice of Xn depends only on the outcome of Xn−1 but not the history of

X0, . . . , Xn−2. Such a process is therefore called a “memoryless” or Markov process.

A random variable τ taking on values {0, 1, . . .}∪{∞} is a stopping time if for every n <∞,

event {τ = n} ∈ Fn. The name comes from the fact that the decision whether to “stop” a process

at some time n has to be made by only knowing the information up to time n that is by knowing

only Fn but not Fn+1,Fn+2, . . ., or F .

Example 2.2.1. Given a stochastic process X and an event A ∈ S, an important example of a

stopping time is the hitting time of A:

τA ≜ inf{n : Xn ∈ A}, i.e., the first time X enters region A.

This is a stopping time since the event:

{τA = n} = {ω : X0(ω) ∈ AC , . . . , Xn−1(ω) ∈ AC , Xn(ω) ∈ A} ∈ Fn.
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An example of a “non-stopping time” (a non-example) is time at which X achieves its maximum

value:

τbad ≜ inf{N : ∀n ≥ N, Xn ≤ XN}

because one needs to know the complete evolution of X to determine the maximum.

Let X : {Xn}∞n=0 be a stochastic process and τ be a stopping time, then X τ denotes the

process X stopped at τ , that is,

X τ ≜ {Xmin(n,τ)}∞n=1.

2.2.1 Martingales

Martingales are a type of stochastic process that is fundamental to this thesis.

Definition 2.2.1 (Martingales). Let Fn be a filtration. Let M = {M0,M1, . . .} be a discrete time

stochastic process adapted to Fn. The process M is called a supermartingale if:

E(Mn+1 | Fn) ≤Mn for all n ≥ 0

The process M is called a submartingale if:

E(Mn+1 | Fn) ≥Mn for all n ≥ 0

If M is both a supermartingale and a submartingale, that is,

E(Mn+1 | Fn) =Mn for all n ≥ 0

then M is a martingale.

Martingales represent stochastic processes whose individual runs M(ω) for some ω ∈ Ω

appear to be random fluctuations under the influence of stochastic noise. However, their collective

behavior captured as “snapshots” of the conditional expected value E(Mn+1(ω) |Mn(ω) = mn) is

invariant on every step n ≥ 0 and, therefore, is invariant over time: E(Mn+1 |M0) =M0.
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Example 2.2.2. Let {Xn}∞n=0 be a stochastic process with X0 = 0 defined for all n ≥ 1 as follows:

Xn+1(ω) =


Xn − 1, with probability p, p ∈ (0, 1)

Xn + 1, with probability (1− p)

Then

E(Xn+1 | Fn) = p(Xn − 1) + (1− p)(Xn + 1) = Xn + (1− 2p).

Notice that when p < 1
2 then Xn is a submartingale E(Xn+1 | Fn) ≥ Xn; when p = 1

2 then

Xn is a martingale E(Xn+1 | Fn) = Xn; and finally, when p > 1
2 then Xn is a supermartingale

E(Xn+1 | Fn) ≤ Xn.

Similarly, supermartingales represent stochastic processes whose expected value decreases

(does not increase) over time.

Theorem 2.2.1 (Martingale Convergence Theorem [61, Theorem 5.2.8]). Let X : {Xn}∞n=0 is a

submartingale with supEX+
n <∞, then Xn converges a.s. to a limit X with E|X| <∞.

A special case of the Martingale Convergence Theorem [61, Theorem 5.2.9] that is better

suited to our framework is the following.

Theorem 2.2.2 (Supermartingale Convergence Theorem). Let X : {Xi}∞i=0 is a non-negative

supermartingale, then as n→ ∞, Xn → X a.s. and EX ≤ EX0.

In the case of Theorem 2.2.2, the limit is the random variable X∞ = lim infn→∞Xn which

need not be part of the set of support of X for convergence result to hold.

Example 2.2.3. Consider the stochastic process defined by X0 = 1 and Xn = UnXn−1 where Un is

a uniform real random variable on the range (0, 1). Then X : {Xn}∞n=0 is a supermartingale since

E(Xn+1 |Xn) = E(UnXn |Xn) = E(Un)Xn = 1
2Xn ≤ Xn. Moreover, Xn is positive for every n ∈ N

and therefore converges a.s. to X∞ = 0.

Additive and Multiplicative Supermartingales.
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Definition 2.2.2. Let M = {Mi}∞i=0 be a supermartingale. Then M is called ε-additive if and

only if

∃ε > 0, E(Mn+1(ω) | Fn) ≤Mn(ω)− ε, for all n ≥ 0.

The non-negative supermartingale M : {Mn(ω) ≥ 0}∞n=0 is called α-multiplicative if and only if

∃α ∈ (0, 1), E(Mn+1(ω) | Fn) ≤ αMn(ω), for all n ≥ 0.

Lemma 2.2.1. Let M = {Mi}∞i=0 be a nonnegative α-multiplicative supermartingale for some

α ∈ (0, 1). Then M̂ = {M̂i :
Mi

αi }∞i=0 is a nonnegative supermartingale.

Proof. Without loss of generality, let ω ∈ Ω and M̂n(ω) = m̂n for some m̂n. We need to show that

E(M̂n+1 | M̂n = m̂n) ≤ m̂n.

Notice M̂j is a deterministic function of Mj for all j ≥ 0. Therefore,

E(M̂n+1|M̂n = m̂n) = E
(
Mn+1

αn+1

∣∣∣∣Mn

αn
= m̂n

)
, (by definition)

=

(
1

α

)
E(Mn+1|Mn = αnm̂n)

αn
, (by linearity of expectation)

≤
(
1

α

)
αMn

αn
= m̂n.

Theorem 2.2.3. Let M = {Mi}∞i=0 be nonnegative α-multiplicative supermartingale for some

α ∈ (0, 1). Then M converges almost surely (samplewise) to 0.

Proof. From Lemma 2.2.1, we conclude that M̂ : {Mi

αi }∞i=0 is a non-negative supermartingale. Ap-

plying the standard supermartingale convergence theorem (Theorem 2.2.2), we note that

every nonnegative supermartingale converges samplewise almost surely. Therefore, for any sample

ω, the sequence M̂0(ω), M̂1(ω), . . ., converges to some finite value M̂∗(ω). Next, notice that the

sequence 1, α, α2, . . . , converges to zero. Moreover, the product of two convergent sequences is also

convergent. Therefore, the sequence M̂i(ω) × αi ≡ Mi(ω) converges to the product M̂∗ × 0 = 0.

This proves M converges almost surely to 0.
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2.2.2 Discrete Time Stochastic Systems.

Stochastic processes provide a general framework that captures a rich class of processes that

operate under uncertainty. In order to make explicit the laws that govern the evolution of the

infinite-state stochastic systems we are interested in, we develop a model of infinite-state discrete

time stochastic transition systems (DTSTS).

Let (Ω, E , P ) be a probability space. Let (S,S) be a measure space and let X be an S-valued

stochastic process. We refer to S as the state space on which X evolves. For the probabilistic

transition systems we define next, we distinguish between the state (or program) variables

X = {x1, . . . , xn} and the random variables R = {r1, . . . , rm}. We use the notation x, r to

denote a valuation of the state, respectively, the random variables, and, x,x′ to denote the current,

and respectively, the next state of the process, that is: Xn = x and Xn+1 = x′ for some n ≥ 0.

The evolution of the stochastic systems studied here is given in the form of a piecewise polynomial

stochastic difference equation x′ := F (x, r) and an initial distribution D0, where the initial state

x0 is drawn according to initial distribution D0.

We make this definition precise:

Definition 2.2.3 (DTSS). A discrete-time stochastic system (DTSS) Π is defined as the tuple

⟨S,R,F ,D0⟩ with the following components:

(1) a state space S and an associated σ-algebra S on it,

(2) a probability space R : ⟨R,FR, PR⟩ from which random samples r are drawn,

(3) an update function F : S ×R→ S, wherein F(x, r) denotes the next state obtained from a

state x ∈ S and random sample r ∈ R,

(4) an initial probability distribution D0 over S.

In Definition 2.2.3 we make two assumptions that carry over to extensions of the DTSS model:

(1) No Nondeterminism - We define the update mapping F to be a function.
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(2) Independence of Samples - The formulation above naturally assumes that the samples

of the random variable ri are drawn independent of the current state xi and from previous

samples r0, . . . , ri−1.

Example 2.2.4 (Strange Random Walk). Let Y = {Yi}∞i=1 be a real-valued stochastic process with

Y0 distributed uniformly over [0, 1]. For all n ≥ 0, define:

Yn+1 =

 Y 2
n , with probability 1

2 ,

2Yn − Y 2
n , with probability 1

2 .

The corresponding discrete time stochastic system is Π : ⟨R,R,F ,D0⟩, where R is the prob-

ability space for the uniform distribution U(0, 1), the initial probability distribution D0 is U(0, 1),

and update function is F : (x, r) 7→ 1{rb≤1/2}(ω)× (x2) + 1{rb>1/2}(ω)× (2x− x2).

Trace Semantics. Let Π : ⟨S,R,F ,D0⟩ be a stochastic system as in Definition 2.2.3, with

state space S ⊆ Rn and the Borel σ-algebra S over S. The sample set Ω : S × Rω consists

of tuples ⟨x0, r0, r1, · · · , rn, · · · ⟩. Here x0 is the initial state sampled from distribution D0, and

r0, r1, . . . , rn, . . . denote successive draws from the sample set R of the probability space R.

We define a discrete-time interpretation of the stochastic system to be the stochastic process

π, i.e. a countable sequence of random variables {πi}∞i=0, where each πi : S ×R → S maps a state

xi and random variables ri to the next state xi+1. As a whole π maps samples ω ∈ Ω to traces (or

sample executions) of the form:

π(ω) : x0
r1−→ x1

r2−→ · · · rn−→ xn · · ·

where each state update is an application of F . Therefore, each random variable πi ∈ π is measur-

able w.r.t. the product σ-algebra S ×FR, and induces a probability measure µi+1 : S → [0, 1] over

the next states.

For any n ≥ 0 and measurable sets S1, . . . , Sn+1 ∈ S, define

µ̄n+1(S1 × · · · × Sn+1) ≜ µ1(S1)µ2(S2) · · ·µn(Sn)µn+1(Sn+1).
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Then µ̄n+1 is a probability measure. Moreover, µ̄n+1 is a consistent probability measure since

µ̄n+1(S1 × · · · × Sn × S) = µ1(S1)µ2(S2) · · ·µn(Sn).

Kolmogorov’s Extension Theorem (Theorem 2.1.2) yields the following unique probability measure

P over (SN,SN):

P (ω : ωi ∈ Si, 1 ≤ i ≤ n) ≜ µn(S1 × · · · × Sn).

Let π(ω) be the sample path defined by sample ω. The probability of path π(ω) is then defined as

Pr(π(ω)) = P (ω). We refer to this measure as the path probability measure.

The stochastic process π is the sample-based or operational semantics of the system Π.

Denotational Semantics. The denotational semantics JΠK of the stochastic system

Π : ⟨S,R,F ,D0⟩ can be thought of as a linear operator transforming distributions of system states:

D0
JΠK−−→ D1

JΠK−−→ · · · JΠK−−→ Dn
JΠK−−→ · · ·

where for all n ≥ 0, Dn denotes the distribution of system states after the system performs n steps

of execution.

Formally, for n ≥ 0, distribution Dn is defined by: (i) the probability space Pn : ⟨Ωn,Sn, µn⟩

with sample set Ωn : S × Rn, σ-algebra Sn over Ωn giving the set of events, probability measure

µn; and, (ii) the Sn-measurable random variable πn mapping samples ω ∈ Ωn to the next system

state. The distribution over random variables r is defined by the probability space R : ⟨R,FR, P ⟩

and the DR : R→ Rm mapping samples to the values of random variables r.

Let Pn ⊗R be the product space with sample set Ωn⊗R : Ωn × R, product σ-algebra Fn⊗R

generated by sets Sn ×Rj where Sn ∈ Sn, Rj ∈ FR, and the probability measure

µn⊗R(Sn ×Rj) = µn(Sn)P (Rj) for Sn ×Rj in Fn×R.

The next state of the system is given by the random variable πn+1 : Ωn⊗R → Σ defined as:

πn+1(ωn, ωR) : {x′ |πn(ωn) = x, Dr(ωR) = r, x′ = F(x, r)}.

Distribution Dn+1 is then the probability measure induced by πn+1 on the probability space Pn⊗R.
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The denotational semantics JΠK can be thought of as the collecting semantics of Π.

Pre-Expectations. Key to the analysis is the notion of pre-expectation. The definitions

below are inspired by [105, 121] and are related to drift operators of Markov processes [122]. We

formalize the notion of pre-expectations over general stochastic systems.

Consider a stochastic system Π : ⟨S,R,F ,D0⟩, and a function h : S → R over the state-space.

The pre-expectation of h w.r.t to F is another function ĥ : S → R such that for any state x ∈ S,

ĥ(x) yields the expected value of h(x′), where the expectation is taken over all states x′ reached in

one step from x, that is,

ĥ(x) : ER (h(F(x, r))) .

In general, a pre-expectation can be difficult to compute for a stochastic system, even if h(x) is of

a simple form, for example, polynomial.

Example 2.2.5. Consider the DTSS Π corresponding to the Strange Random Walk of Exam-

ple 2.2.4 and let h(x) = x be a function. The pre-expectation of h is computed as follows:

ĥ(x) = ER[1{rb≤1/2}(ω)(x
2) + 1{rb>1/2}(ω)(2x− x2) =

1

2
(x2) +

1

2
(2x− x2) = x.

This means for DTSS Π function h is invariant under the pre-expectation transformation (i.e.,

ĥ = h). This notion of invariance is closely related to the notion of stochastic invariance that

martingales provide and is the subject of Chapter 4.

2.3 Probabilistic Properties and Concentration of Measure.

In this section we describe some of the properties of interest for the class of stochastic systems

described in the previous section.

Let Π be a discrete time stochastic system over some state-space S with an associated σ-

algebra S. Let Ω : S × Rω be the set of outcomes and Pr the path probability that maps a

measurable set T ⊆ Ω to its probability Pr(T ). Let π be a function that maps each sample ω ∈ Ω

to the corresponding sample path of the system π(ω) : ⟨x0,x1, . . . ,xm, . . .⟩. Likewise, let πm map

each sample ω ∈ Ω to the state encountered at time m, i.e., πm(ω) : xm.
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Almost Sure Reachability. For a predicate φ over the system states, the reachability

property ♢φ is a collection of sample paths

J♢φK ≜ {ω ∈ Ω | ∃n ≥ 0, πn(ω) |= φ}

that eventually (or within some finite time) satisfy φ. This is measurable as it is the countable

union of measurable sets. The probability of the reachability property ♢φ is denoted Pr(♢φ). We

say a reachability property ♢φ holds almost surely (a.s.) iff Pr(♢φ) = 1.

Almost Sure Termination: Given a region ⊤ ⊆ S of designated final (or terminating states)

and the membership predicate (also known as the characteristic function)

φ⊤(x) ≜


1, if x ∈ ⊤

0, otherwise

the almost sure termination problem asks whether Pr(♢φ⊤) = 1. Henceforth, we identify member-

ship predicates φT with the set of states T ⊆ S they characterize.

Almost Sure Repeated Reachability. For a predicate φ over the system states, the

persistence property ♢□φ is the collection of sample paths

J♢□φK ≜ {ω ∈ Ω | ∃n ≥ 0, ∀m ≥ n, πm(ω) |= φ}

whose execution reaches φ in some finite number of steps m and remains in φ forever. The proba-

bility of the persistence property ♢□φ is denoted Pr(♢□φ). We say the persistence property ♢□φ

holds almost surely if and only if Pr(♢□φ) = 1.

Similarly, a recurrence property □♢φ is the collection of sample paths

J□♢φK ≜ {ω ∈ Ω | ∀n ≥ 0, ∃ m ≥ n, πm(ω) |= φ}

along which execution returns infinitely often to φ. We say that the recurrence property □♢φ holds

almost surely if and only if Pr(□♢φ) = 1.

Qualitative Properties: The three properties stated above are also known as qualitative (in

contrast with quantitative properties we describe next) reachability, persistence and recurrence
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properties and can be stated in the probabilistic temporal logic PCTL∗ respectively as the formulas

P=1(♢φ), P=1(♢□φ) and P=1(□♢φ).

Probabilisitic Assertions. In addition to qualitative properties that hold either with

probability 0 or with probability 1, there is another important class of quantitative probabilistic

properties in which probability can range between [0, 1].

Given the stochastic system Π above and a state predicate φ, a probabilistic assertion is of

the form: P (φ) ≤ γ, where γ ∈ [0, 1] is a probability bound. This formula encodes two types of

problems:

(1) A verification query - Given a constant γ does the probability of φ exceed the probability

bound?

(2) An estimation query - Can you estimate a tight upper (or lower) probability bound γ?

Quantitative properties have been extensively studied in the literature. Here we mention these for

two reasons. First, to point out that we have also studied these in Sankaranarayanan et al. [148]

and Bouissou et al. [23] but that work is not part of this thesis. Second, to demonstrate how the

theory of martingales we develop here naturally enables the application of concentration of measure

results [60] that can answer the estimation query.

Concentration of Measure. Concentration of measure is the phenomenon whereby a

large portion of the probability measure associated with a random variable X concentrates within

a “narrow” range around the expected value EX. This phenomenon has been formalized in a series

of increasingly tight probability bound inequalities: Markov’s Inequality, Chebyshev’s Inequality,

etc. We focus on the result that leverages martingales [60] and its extensions [64], [13, Chapter 3].

Theorem 2.3.1 (Azuma-Hoeffding Theorem). Let M : {Mn}∞n=0 be a bounded supermartingale,

i.e., an ≤Mn −Mn−1 ≤ bn for all n > 0. Then for all n ∈ N and t ∈ R such that t ≥ 0,

P (Mn −M0 ≥ t) ≤ exp

(
−t2

2
∑n

k=1(bk − ak)2

)
.
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Moreover, if M is a martingale the symmetric bound holds as well:

P (Mn −M0 ≤ −t) ≤ exp

(
−t2

2
∑n

k=1(bk − ak)2

)
.

Combining both bounds, we conclude that for a martingale M we obtain

P (|Mn −M0| ≥ t) ≤ 2 exp

(
−t2

2
∑n

k=1(bk − ak)2

)
.

Azuma-Hoeffding bound is a concentration of measure inequality.

Example 2.3.1. Consider the supermartingale process {Xn}∞n=0. Notice that for all n ≥ 1, a ≤

Xn −Xn−1 ≤ b with a = −1 and b = 1. Fix t = 30, n = 50, then the Azuma-Hoeffding bound is

P (Mn −M0 ≥ t) = P (M50 ≥ 30) ≤ exp

(
−t2

2n(b− a)2

)
≤ exp

(
−(30)2

2(50)(2)2

)
= 0.1054.



Chapter 3

Overview

3.1 Probabilistic Programs

Probabilistic programs provide a common framework for modeling stochastic processes. Prob-

abilistic programs are imperative (or functional) programs augmented with two new features: (i)

the ability to generate (or sample) random values from built-in standard distribution primitives

such as rand(), Bernoulli(p), Uniform(lb,ub), Gaussian(mu,sigma), etc.); (ii) the ability to

filter (or condition) the execution of the program based on Boolean predicates over the program

variables. For example, consider the following simple probabilistic program:

1 int x = Uniform (-5,3);

2 int y = Uniform (-3,5);

3 int count = 0;

4 while (x + y <= 10) {

5 if flip (3/4){

6 x = x + Uniform (0,2);

7 y = y + 2;

8 }

9 count ++;

10 }

The program defines program variables x, y, count and initializes x and y according to draws from

uniform distributions over the corresponding real intervals. On every iteration of the loop the pro-

gram checks that the Boolean predicate (x+ y <= 10) is satisfied and independent of any previous
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random draws “flips” a biased coin and with probability 3/4 chooses to increment x, y; whereas,

with complementary probability 1 − (3/4) = 1/4 it leaves the values of the program variables

unchanged. Variable count tracks the number of iterations of the loop.

This probabilistic program models (or, equivalently, defines) a discrete time stochastic process

Π as in Definition 2.2.3 whose sample executions π(ω) and distributions Dn over the possible values

of program variables x, y, count we visualize in Figure 3.1. We focus on probabilistic programs

with loops.

Semantics. The first formal semantics of imperative probabilistic programs is defined in a

seminal work by Kozen [108]. He defines two types of semantics: an operational one based on mea-

surable functions over measurable spaces that a machine equipped with an infinite stack of random

choices operates; and a second, equivalent one, based on continuous linear operators on a Banach

space of measures. The former represents the view that probabilistic programs are essentially de-

terministic functions given that all random choices have been resolved a priori. This corresponds

to drawing the sample ω ∈ Ω that “drives” a stochastic process as defined in Section 2.2.2 and

it is the basis for the operational semantics we build our polynomial stochastic transition system

(PSTS) model upon (see Section 4.1). The first semantics has inspired most of the subsequent

weakest precondition type analysis approaches (see Section 3.4, weakest precondition) whereas

the second one motivated distribution transformers and abstract interpretation efforts based on

Markov decision process (MDP) (see Section 3.4, abstract interpretation).

Other notable works to the development of semantics of probabilistic programs are the Giry

monad [78, 133], probabilistic powerdomain of Jones [101] that provides formal grounds to interpret

nondeterminism in probabilistic programs as sets of possible probability distributions, probabilistic

predicate dynamic logic [109], probabilistic concurrent constraint programming [85, 57], and others.

Recent work by Gordon et al. [81] focuses on conditioning and inference as semantic elements

central to probabilistic programming. Gretz et al. [84, 83] establish an equivalence of operational

semantics based on MDP with rewards and the weakest precondition (pre-expectation) calculus of

McIver and Morgan [121] for probabilistic programs over discrete distributions. Jansen et al. [100]
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provide a formal semantic definition of conditioning within the same context.

Properties, Program Analysis and Verification. From the standpoint of formal meth-

ods and program analysis probabilistic programs present three major challenges:

(1) They model physical processes that manipulate continuous quantities that are often mod-

eled as real-valued program variables. The stochastic systems that such programs define

are infinite state.

(2) Due to the uncertainty inherent in these programs, we are forced to maintain both a set S

of all possible states the system could occupy and a probability distribution function µS

over S to capture the likelihood of each state. As indicated in Figure 4.6 both S and µS

vary along the executions of a probabilistic program. This poses an efficient representation

and propagation challenges for most automated analysis tools.

(3) Program variables are random variables. This means that predicates over program variables

are also random variables which in turn induces stochastic control flow of the programs.

The stochastic nature of probabilistic programs makes formal reasoning about the properties

of these programs challenging but also intriguing. Fundamental trace properties such as termina-

tion, reachability and invariance take on a stochastic interpretation. For example, the question:

Does every possible execution of the motivating probabilistic program reach a target state (x+ y > 10

for termination)?, becomes Does the set of all terminating executions have probability 1?. Proper-

ties that hold with probability 1 are called qualitative properties.

A new class of quantitative properties emerges that seeks to provide quantitive bounds on

the probability of events. Examples of such properties are: What is the probability that x > 5

after n = 25 iterations of the loop? What is the expected value of y upon program termination?

What is the expected number of loop iterations before terminating? Both types of properties can be

expressed as probabilistic assertions (see Section 2.3); however, care must be taken to ensure

such properties are well-defined. In order to formally define stochastic trace properties probabilistic

extensions to modal temporal logics such as probabilistic branching time logic PCTL [87, 10] have
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been developed. Each PCTL property is no longer satisfied or falsified like its nonprobabilistic

analogue but it is done so with some probability.

Given a probabilistic program P and a probabilistic assertion φ, the verification problem

is to determine whether the probabilistic assertion holds. Determining the probability with which a

probabilistic assertion holds (or an upper and lower bound on it) is called probabilistic inference.

3.2 Explicit State Verification

Explicit state verification encompasses a set of techniques that either represents or reasons

about the probability of individual program states. Because probabilistic programs provide infinite

state verification problems these techniques necessarily have to provide either aggregate statistical

guarantees, or provide sound means of extrapolating from finitely many observed states to the

infinitely many unobserved ones.

Simulation Based Techniques. Simulation approaches such as Monte-Carlo techniques [145]

provide a quick and efficient way to empirically observe individual behaviors of a probabilistic pro-

gram by simply executing it. The strength of these approaches lies in the fact that in the presence of

complete dynamic information it is easy to sample and evaluate even highly non-linear, discontinu-

ous expressions over parametric distributions. While highly accurate, these approaches lack formal

guarantees for coverage and convergence. The outcomes of such experiments are then analyzed in

aggregate using statistical analysis techniques and results incorporate a confidence estimate of

quality or reproducibility of the inferred facts [99].

Because of the efficiency of Monte-Carlo simulations, many of the probabilistic symbolic

execution techniques we present next use it to guide the executions of the analysis. Statistical

explicit state model checking also relies on it to speed up estimation of probability bounds on

probabilistic assertions. Finally, some volume computation and Bayesian inference techniques use

it to numerically integrate probability distributions within a bounded range.

We use Monte-Carlo simulations throughout this dissertation to visualize the behavior of the

probabilistic programs in the form of individual sample traces and intermediate distribution over
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the values of program variables. We briefly explore statistical results in the context of quantitative

properties studied in Chapter 6.

Probabilistic Symbolic Execution. Probabilistic symbolic executions [76, 148, 69, 42,

116, 70, 68, 19, 20, 18] uses standard symbolic execution [107] to symbolically represent all program

states whose execution follows the same program path via symbolic path constraints. Monte-Carlo

simulation in combination with statistical hypothesis testing [148] or exhaustive enumeration of

program paths up to a bounded depth has been used to collect a sufficient set of program path

constraints. Probabilistic program slicing [93] has been used to reduce the number of relevant paths.

Finally a probability computation is performed for each path to determine the path probability

as well as the probability of satisfying a probabilistic assertion along that path. Approaches to

probability computation rely either on model counting or volume computation. Model counting is

performed using boolean satisfiability (SAT) or satisfiability modulo theory (SMT) solvers [73, 38]

that count the number of satisfying assignments for a path formula. Volume computation relies

on precise tools like LattE integrale [55] that use improved versions of Barvinok’s algorithm [12]

to compute the number of discrete lattice points within a convex polyhedron (weighted by the

probability of each state), on approximate numerical integration techniques [148, 19], or on provably

correct probabilistic samplers [94] to compute the probability of a path formula involving real-valued

variable constraints.

The estimation problem then reports the sum of the probabilities of the assertion along the

observed individual paths; whereas the verification problem considers both this sum and the total

probability of the unseen paths as the complement of the path probability of all observed paths.

Probabilistic Model Checking. Probabilistic model checking [10] leverages results from

probability theory on finite state Markov chains and Markov decision processes [142] to extend

standard (non-probabilistic) model checking [44] to reason over finite state probabilistic transi-

tion models. The ability to symbolically represent finite state distributions using multi-terminal

bounded decision diagrams (MTBDDS) [74] in combination with symbolic model checking [28] are

behind the wide success of probabilistic symbolic model checkers such as PRISM [111] (see [1] for
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a survey of applications).

PRISM takes in a finite state transition system in the form of a discrete or continuous time

Markov chain (DTMC, CTMC [110]), or a Markov Decision Process (MDP) [71] and a probabilistic

assertion φ written as a probabilistic branching time logic PCTL [87] formula. The property is then

verified to hold along the nodes and paths of the model graph as with standard (non-probabilistic)

model checking. The probability computation is built up in a bottom up fashion in the structure

of the formula φ. The probability bound derived for the initial state of the system is reported as

the probability of the assertion.

Statistical model checking [43] reduces the effort of computing the exact probability of an

assertion by providing high confidence approximantion on the probability that the assertion holds.

This is done by integrating the efficiency of sampling with the statistical guarantees that hypothesis

testing provides as one observes a small but sufficient number of samples [157]. This eliminates the

need for exhaustive computation over the full transition system model.

The downside of the model checking approach is that it is mostly restricted to finite state

probabilistic models. This means that all stochastic processes with polynomial dynamics we con-

sider in this dissertation cannot be handled directly and would require some form of discretization

and finitezation procedure. This could be accomplished by extending probabilistic counter-example

guided abstraction refinement framework of Hermanns et al. [91] to infinite state probabilistic pro-

grams with polynomial guards and updates we consider here.

For the most recent advances in probabilistic model checking see the survey by Katoen [104].

3.3 Probabilistic Abstract Interpretation

Abstract Interpretation [51] provides a framework for safely overapproximating the execu-

tions of a program P . Abstraction allows for a finite representation (called an abstract element)

of potentially infinite number of concrete states of a system by carefully selecting what informa-

tion to capture by the elements of the abstract domain (and what to “abstracted away”). The

goal of abstract interpretation is to infer invariants that overapproximate the set of all possible
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behaviors of P providing alternate “abstract” semantics for P that manipulate the finite represen-

tations (abstract elements) instead. The strength of abstract interpretation lies in the fact that

it automatically performs abstraction, loop invariant generation, and, therefore, resolves program

termination. However, the choice of a good abstract domain is essential to the success of this

analysis approach.

Abstract domains for probabilistic programs were first considered by Monniaux [126], by

enriching standard abstract domains such as intervals and polyhedra with bounds on the measure

concentrated in each element of the domain. Unfortunately, this approaches suffers from the fact

that the domain does not track how the measure is distributed within each abstract element. This

is due to the fact that join (and widening) operations overapproximate the set of reachable states

and measure needs to extend even over the unreachable states artifact of the join (or widening).

The amount of imprecision that accumulates over the course of the abstract interpretation analysis

often leads to a failure case when the probability of a query is estimated to be anywhere in [0, 1].

A refinement of this idea was presented by Smith [149] where the abstract domain is selected

such that the measure over the elements follows a truncated Gaussian distribution. This analysis

unfortunately also proved to be ineffective when reasoning about correlated program variables.

Refinements of Monniaux’s original approach appears in the work of Mardziel et al [119] that

in addition tracks the number of discrete points within each polyhedral abstract element as well

as bounds on the measure associated with any discrete point. This allows the analysis to track

distributions more precisely but is prohibitively expensive computationally because after every

step of program execution the analysis relies on the LattE integrale [55] to compute the number of

discrete points in a polyhedron. Bouissou et al. [22, 23] partly alleviate the problem of correlated

program variables by extending abstract domains with probabilistic affine forms that symbolically

track limited dependence information between program expressions.

Monniaux also presents a backward abstract interpretation scheme to compute the probability

of an observable assertion at the program output, and characterize the output distribution [128].

This approach goes along the lines of Kozen’s second semantics [108] and focuses on measurable
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functions. The backwards approach treats the program as a measurable function, and the backward

abstract interpretation follows the natural definition of the output distribution through the inverse

mapping [40]. However, the approach requires a user generated query or a systematic gridding of

the output states to define the distribution.

Di Pierro et al [56] present a non-standard approach to probabilistic abstract interpretation

based on the notion of distance between probability measure functions. Abstraction is a non-

invertable operator between Hilbert spaces of probability measures. However, instead of defining

a concretization based on overapproximation of all possible concrete states the Moore-Penrose

pseudo-inverse operator is used to provide a single “closest” concretized measure over a potentially

different set of support.

Cousot and Monerau [53] present a systematic and general abstract semantics for probabilis-

tic programs that views the abstract probabilistic semantics obtained by separately considering

abstractions of the program semantics, the probability (event) space, and a “law abstraction”. The

abstraction law is a function mapping abstract states to the distribution over the set of possible

abstract next states obtained from a single step of program execution. Their approach conve-

niently captures existing techniques as instances of their framework, while providing new ways of

abstracting probabilistic program semantics.

Summary. In general probabilistic abstract interpretation analyses, that overapproximate

distributions over the reachable states tend to be ill-suited for analysis of probabilistic programs

with approaches by Bouissou et al. [22, 23] and, despite computationally expensive, Mardziel et

al. [119] being most practical.

Therefore, the work of this dissertation takes a different approach: we define an abstract

domain over the moments of probability distributions. Based on our current understanding, the

approach of using martingale expressions to reason about probabilistic programs fits into their

framework by viewing expectation invariants of Chapter 7 as representing sets of distributions

(with constraints over their first moments); and interpreting the proposed transfer functions as

law abstractions that characterize next state distributions.
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3.4 Deductive Verification Approaches

Rather than keep track of the distributions along possible executions of the system, deduc-

tive verification approaches derive facts about the executions of the program as a whole without

explicitly tracking or approximating the distribution over the program states. These facts can be

in the form of polynomial functions over the program states that encode functional relations be-

tween the values of program variables at a given program point. Boolean predicates involving such

functions can serve as program invariants, prove progress measures and prove global properties for

the program.

Probabilistic Weakest Precondition. McIver and Morgan were among the first to con-

sider deductive approaches for infinite state probabilistic programs with discrete distributions [121].

Their work provides a weakest precondition (Floyd-Hoare style) calculus that transforms quanti-

tative invariants over the states. Quantitative invariants are invariants over the expected value of

program expressions. At the heart of the calculus is the quantitative interpretation of the program

semantics: a probabilistic program P transforms the expected values of program expressions e as

it executes. This transformation can be captures as a weakest “pre-expectation” predicate trans-

former wp(P, e) that for an expression e over the post states of the program produces an expression

e′ whose expected value over the initial states matches that of e over the post states. Therefore,

answering a probabilistic query φ at the end of the program execution is equivalent to answering a

query about the expected value of expression φ̂ = wp(P,φ) that is the pre-expectation of φ. Katoen

et al. [105] provide a constraint-based framework for automatically inferring linear program expres-

sions that are remain invariant under the pre-expectation operator: e = wp(P, e). This framework

was later implemented as the tool PRINSYS [82] that relies on computer algebra systems (CAS) to

perform quantifier elimination during the process of generating candidate expressions. We discuss

this tool in more detail when we compare the results of our implementation in Chapters 5 and 7.

Unfortunately, the works of McIver and Morgan and Katoen et al. focus on probabilistic

programs in which the stochastic inputs are restricted to discrete distributions. We naturally lift
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this restriction and consider a richer class of distributions including Gaussian, Poisson, Uniform or

Exponential random variables. Our setup in Chapter 5 can use any distributions whose expecta-

tions (and some higher moments) exist, and are available. Furthermore, our technique synthesizes

invariants that are polynomial expressions involving the program variables. In Section 4.2 we prove

that the quantitative invariants in our polynomial stochastic transition systems correspond to the

well-known concept of martingales and supermartingales from probability theory [156].

Finally, McIver and Morgan treat demonic non-deterministic as well as stochastic inputs.

Any nondeterminism is resolved as the minimum over all nondeterministic choices of the pre-

expectations. We use this idea in Section 4.5 to extend our deductive approach using martingales

to polynomial stochastic transition systems with nondeterminism.

Martingales and the Concentration of Measure Phenomenon. The approach and

semantics we adopt in this thesis are similar to those of McIver and Morgan [121] and Gretz et al. [84,

83, 100] (see Sections 4.1, 4.5) in that distributions are represented implicitly by only tracking

information about properties of reachable distributions such as moment inequalities of program

expressions relevant to the probabilistic assertions. We make this point precise in Chapters 4, 6, 7.

We extend these deductive approaches to richer classes of probabilistic programs by sup-

porting continuous distributions. However, at the same time we syntactically restrict conditional

statements in our probabilistic programs by requiring that guards are either only over program

variables or random draws but not both (such guards can be expressed by first storing the random

choices as program variables). Observe statements [81, 93, 146] can be encoded as blocking loops

(see [93] for details). We adopt a simple probabilistic transition system model to reflect the control

flow graph of such programs (standard algorithmic construction of this process can be found in

Manna and Pnuelli [118] and Chatterjee et al. [35]).

Probabilistic assertions (queries) [148, 76, 146, 42] normally asked over terminating behaviors

of programs (or over the output distribution) are simplified by decoupling termination reasoning

and reasoning about the probabilistic bounds. This is done by trivially extending all runs of the

probabilistic transition systems to infinite runs through stuttering (repeating infinitely the first
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terminating state along an execution). This is equivalent to considering the stopped version of the

corresponding stochastic process.

In the context of a probabilistic program P , when a program expression e is evaluated along

the sample traces of the probabilistic program, e induces a stochastic process. Any program

expression e that satisfies the pre-expectation constraint e ≤ preE(P, e), induces a stochastic

process that is a supermartingale (we prove this result in Section 4.2). This establishes a formal link

between the sample runs of a probabilistic program and the convergence properties of martingales.

Martingale theory in connection with concentration of measure inequalities has been em-

ployed before to establish performance guarantees in randomized algorithms [129, 60]. Bournez [24]

presents a variations of Foster’s Theorem [72] to prove almost sure termination of probabilistic pro-

grams by manually providing a suitable supermartingale expression.

In Chapter 4 we present an alternative proof that supermartingale expressions can be used

to prove almost sure termination of probabilistic programs. We phrase this result in the form of a

deductive proof rules with sufficient conditions on the supermartingale expression to prove general

almost sure reachability properties for a target set T . These conditions are involve only the initial

distribution of the program, the target set T of interest and the pre-expectation of the certificate

expression; however, they are independent of any intermediate probability distribution Dn. We then

show how by massaging the constraints we can provide similar proof rules to establish qualitative

repeated reachability properties such as persistence ♢□T or recurrence □♢T for a target set of

states T .

In Chapter 5 we provide the necessary steps to encode the conditions of these proof rules as

linear and semidefinite programming constraints over the unknown coefficients of program expres-

sions. Solving these constraints allows us to infer supermartingale certificates. In Chapter 6 we

present how these supermartingale certificates allow us to leverage results from probability theory

(known as concentration of measure inequalities for large deviations of supermartingales) to provide

upper bounds on the probability of extremely unlikely events known as “rare events”.

In Chapter 7 we show that by taking linear combinations of martingale and supermartingale
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expressions we can derive new expectation invariants. This gives us the means to lift the notion of

martingale and supermartingales expressions to sets of mutually inductive expectation invariants.

A set E = {e1, . . . , ek} of program expressions e1, . . . , ek is called an inductive expectation invariant

if, when considered as a set of facts, E is expressive enough to prove that the expected value EDn(en)

of each individual expression does not change sign across any iteration of the probabilistic loop.

This provides us with a basis for a novel abstract interpretation procedure to automatically infer

new supermartingale certificates.

Recent Extensions. The work on reachability properties of Chapter 4 was published in

Chakarov et al. [32]. It first illustrated how an almost sure termination argument for probabilistic

programs can be mechanized by reducing it to convergence properties of ranking supermartingale

program expressions. This idea was later extended by Ferrer et al. [67] to a sound and complete

proof technique for a.s. termination of a class of affine probabilistic programs. The algorithmic

steps and their complexity were subsequently analyzed by Chatterjee et al. [36] and further extended

to the class of polynomial probabilistic programs and ranking supermartingales in Chatterjee [35].

The proof rules for repeated reachability of Section 4.4.1, 4.4.4 of polynomial stochastic

systems were published in Chakarov et al. [34]. Simultaneously, a deductive framework to cover

all of PCTL∗ was presented by Dimitrova et al. [58]. However, assertions and inductive invariant

annotations for proof rules in their framework need to be supplied manually.

The problem of generating polynomial expectation invariants was first done by Chen et

al. [37] via simple Lagrange interpolation. We presented the use of Putinar’s representation result

(Chapter 5) in conjunction with semidefinite programming in Chakarov et al. [34]. The use of

alternative representations for polynomial supermartingale generation was considered in [35].

Finally, quantitative reachability and termination the Bernstein’s inequality was considered

by Chatterjee et al. [36]. Kaminski et al. [102] consider the complexity and provide a predicate

transformer calculus [103] to infer the expected termination time of a class of probabilistic pro-

grams. More general quantitative properties via concentration of measure results were considered

by Bouissou et al. [23].
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Figure 3.1: In top left, a number of sample executions of the motivating probabilistic program.
Then from top to bottom, left to right, frequency histograms for the distributions Dn of values for
the program variables at the loop head after n = 0, 5, 10, 25 iterations of the loop.



Chapter 4

Qualitative Program Analysis with Martingales:

Almost Sure Termination, Persistence and Recurrence.

In this chapter we provide proof rules for almost sure reachability (termination), persistence,

and recurrence properties using results from supermartingale theory.

We begin the chapter by presenting an extension of our discrete time stochastic systems

to location based polynomial stochastic transition systems. In Section 4.2 we present su-

permartingale expressions that relate the properties of the system to convergence properties of

martingales. We then state convergence results that establish the qualitative properties of a system

in the form of proof rules and prove their soundness. Finally, we discuss some of the related work

on qualitative properties and discuss some recent extensions of the work presented here.

Motivating Example. Consider the probabilistic program in Figure 4.1 that initializes

the program variables (x, y) to a random integer drawn from a joint uniform distribution D0 over

the set of support [−5, 3] × [−3, 5] (lines 1-2). We have also instrumented the program with an

explicit loop counter variable count. On every iteration of the loop the program checks that the

loop guard holds and independent of any previous random draws “flips” a biased coin (line 5)

and with probability 3/4 chooses to increment x, y (lines 5-6); with complementary probability

1− (3/4) = 1/4 it leaves the values of the program variables unchanged.

An important question about the program is: Does every execution of the program

terminate (i.e., reach the termination location in line 11)? The answer is no. For any

n ∈ N, the probability of an execution not terminating after n loop iterations (i.e., count = n)
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1 int x = unifRand (-5,3);

2 int y = unifRand (-3,5);

3 int count = 0;

4 while (x + y <= 10) {

5 if flip (3/4){ //r_flip

6 x = x + unifRand (0 ,2);//r1

7 y = y + 2;

8 }

9 count ++;

10 }

11 //loop termination count
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Figure 4.1: (Left) An example of a simple probabilistic program; (Right) Histogram of the value
of count for 106 simulations of the program.

is strictly greater than
(
1
4

)n
> 0. Furthermore, the only non-terminating execution has to always

take the “else” branch of the conditional flip in order to never make progress towards termination

condition x+ y > 10. Such an execution violates the semantics of the probabilistic choice in line 5

and in fact has probability limn→∞
(
1
4

)n
= 0.

To account for the probabilistic nature of the program and its properties, we reformulate

the problem of termination to almost sure (a.s.) termination: Does the set of executions that

reach a termination location have probability 1? The answer for the program in Figure 4.1

is yes. Using the theory of supermartingale convergence that is the subject of this chapter we

can provide a formal proof that with probability 1 every run of the program terminates. Similar

to the analysis of non-probabilistic programs, the key step of the proof is identifying the program

expression 10− x− y is a supermartingale ranking function.

4.1 Probabilistic Transition Systems

In this chapter, we focus on polynomial stochastic systems, which are instances of DTSS

with piecewise polynomial update functions.
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Let X = {x1, . . . , xn} denote a set of system (program) variables and let x denote a vector

representation of their valuation. Let R = {r1, . . . , rm} denote a set of random (stochastic) variables

with corresponding vector r.

Definition 4.1.1. A polynomial stochastic transition system Π is a tuple ⟨X,R, L, T , ℓ0,D0⟩

with the following components:

(1) a state space X ⊆ Rn is a semi-algebraic set (i.e., X is the solution of finitely many

polynomial inequalities) with an associated σ-algebra X ⊆ B(Rn) on it,

(2) a probability space R : ⟨R,FR, PR⟩ for the stochastic inputs written collectively as r : (rc, rb),

where rc denotes the (possibly multivariate) continuous random variable and rb denotes the

(discrete) random variables that take on finitely many values,

(3) a finite set of locations L = {ℓ0, . . . , ℓF } with distinguished initial ℓ0 and final location ℓF ,

(4) an initial probability distribution D0 over L×X with from which an initial state (ℓ0,x0) is

drawn,

(5) a finite set of transitions T = {τ1, . . . , τp}. Each transition τ ∈ T is a tuple ⟨ℓ, φτ , fτ ⟩ that

consists of:

(a) A source location ℓτ ∈ L,

(b) A guard predicate φτ (x) that is a conjunction of polynomial inequalities over x,

(c) An update function fτ (x, r) : X×R→ L×X that is a piecewise polynomial function

of the form:

fτ (x, r) :


(m1, gτ,1(x, rc)), if ψτ,1(rb)

...

(mj , gτ,j(x, rc)), if ψτ,j(rb) ,

where m1, . . . ,mj ∈ L are target locations, gτ,1, . . . , gτ,j are fork update (multi-

variate polynomials over x, rc), and ψτ,1(rb), . . ., ψτ,j(rb) represent mutually exclusive



37

ℓ

m1 · · · mk

φτ (x)

pτ,1 x′ = gτ,1(x, r) x′ = gτ,k(x, r) pτ,k

ℓ4

ℓ11

φ
1
(x
)
:
x
+
y
≤

1
0

p
1,1 : 3

4 p 1
,2
:
1
4

x′ = x + r1
y′ = y + 2
c′ = c + 1

x′ = x

y′ = y

c′ = c + 1

φ
2(x) : x+ y > 10

p2,1 : 1

(x′, y′, c′) = (x, y, c)

id

Figure 4.2: (Left) Shows the structure of a generic PTS transition with k ≥ 1 forks. Each fork has
a probability pτ,j , fork update gτ,j and target location mj . (Right) Shows the PSTS for program
in Figure 4.1 with two transitions and a self-loop id (count is abbreviated c).

and exhaustive predicates over the discrete random variables rb.We refer to each tuple

(mi, gτ,i(x, rc)) as a fork that is guarded by ψτ,i with corresponding fork probability

pτ,i : Prob(ψτ,i(rb)).

Example 4.1.1. Consider the probabilistic program of Figure 4.1. The corresponding PSTS is as

follows:

• X = {x, y, count},

• R = {r1, rflip} where rc : r1 ∼ Uniform(0, 2), and rb : rflip ∼ Bernoulli(3/4). We assume

the values of r1 and rflip are drawn independently and let DR denote their joint probability

distribution.

• L = {ℓ4, ℓ11} where ℓ4 is the initial location and ℓ11 is the final (terminating) location that

corresponds to line 11.

• T = {τ1, τ2, id} where

τ1 : ⟨ℓ4, φ1(x) : x+ y ≤ 10, fτ1⟩

with

fτ1(x, r) :

 (ℓ4, gτ,1(x, rc)), if ψτ,1(rb) : rflip = 1

(ℓ4, gτ,2(x, rc)), if ψτ,2(rb) : rflip = 0
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with fork updates gτ1,1(x, rc), gτ1,2(x, rc) as depicted;

τ2 : ⟨ℓ4, φ2(x) : x+ y > 10, fτ2⟩

with

fτ2(x, r) : (ℓ11, id), if ψτ,1(rb) : true;

and a special self-loop transition id with φid : true for guard and the identity function

id(x, r) = x for update function.

For a polynomial stochastic transition system to represent a stochastic system over X as in

Definition 2.2.3, we require that the transitions together form a function over the state-space X:

(1) The guards are pairwise mutually exclusive: φτi ∧ φτj is unsatisfiable for all i ̸= j.

(2) The guards are mutually exhaustive:
∨k

j=1 φτj ≡ true.1

Mutual exhaustiveness is not strictly necessary as long as the disjunction of the transition guards

covers the set of reachable program (system) states.

Conditions (1) and (2) together imply that the set of transition guards forms a partition of

the state-space X; therefore, system update function FT ≜ φτi 7→ fτi is a piecewise polynomial

transition function that casts any polynomial transition system into a discrete time stochastic

system.

Execution. A state of a polynomial stochastic transition system is a tuple ⟨ℓ,x⟩ of a

location ℓ ∈ L and a valuation x of the system variables X. Before taking a transition τ : ⟨ℓ, φτ , fτ ⟩

from a state s : ⟨ℓ,x⟩ a check is performed to determine whether τ is enabled, i.e., x |= φ. If

so, the result of executing τ from s is a probability distribution over the post states obtained by

carrying out the following steps:

(1) Draw a vector of random variables r : ⟨r1, . . . , rm⟩ from the joint distribution DR.

(2) Choose a fork ⟨mj , gτ,j⟩ for j ∈ [1, k] based on the ψj(rb).

1 For simplicity, we assume fork guards ψτ,i, i ∈ [1, j] satisfy the same constraints.



39

(3) Update the state of the system to s′ : ⟨mj ,x
′ = gτ,j(x, rc)⟩. We call mj ∈ L the post-

location and x′ the post-state of the system variables.

Let PostDistrib(s, τ) denote the distribution over the post-states ⟨ℓ′,x′⟩ that results from taking

the enabled transition τ from the state s. Because FT is a function, exactly one transition is enabled

from each state s of the polynomial stochastic transition system. Therefore, we abbreviate the

unique post-distribution as PostDistrib(s). For the full details please refer to the operational

semantics defined in Section 2.2.2 (for every n ≥ 0, if s ∼ Dn, then PostDistrib(s) is the

consistent product extension using Kolmogorov’s Extension Theorem).

Definition 4.1.2. Let Π be a polynomial stochastic transition system. A sample execution (a

run, or a trace) of the system is the countably infinite sequence of states:

ρ : ⟨ℓ0,x0⟩
τ1−→ ⟨ℓ1,x1⟩

τ2−→ · · · τn−→ ⟨ℓn,xn⟩ · · ·

An alternative notation that emphasizes the stochastic variables driving the system is:

ρ(ω) ≜ ⟨ℓ0,x0⟩
fτ1 (x0,ω1)−−−−−−→ ⟨ℓ1,x1⟩

fτ2(x1,ω2)−−−−−−→ · · · fτn (xn−1,ωn)−−−−−−−−→ ⟨ℓn,xn⟩ · · ·

such that:

• ⟨ℓ0,x0⟩ is the initial state drawn from the initial distribution D0, i.e., ⟨ℓ0,x0⟩ ∼ D0(ω0);

• for every j ≥ 0, state sj : ⟨ℓj ,xj⟩ satisfies transition guard φτj+1, i.e., xj |= φτj+1;

• each state sj+1 : ⟨ℓj+1,xj+1⟩ is a sample from PostDistrib(sj), i.e., Dj+1 = PostDistrib(sj)

and sj+1 ∼ Dj+1(ωj).

Definition 4.1.3. Let Π be a polynomial stochastic transition system. Let

ρ(ω) : ⟨ℓ0,x0⟩
fτ1 (x0,ω1)−−−−−−→ ⟨ℓ1,x1⟩

fτ2 (x1,ω2)−−−−−−→ · · · fτn (xn−1,ωn)−−−−−−−−→ ⟨ℓn,xn⟩ · · ·

be a sample execution, the corresponding sample path πρ(ω) is the projection of ρ(ω) onto L:

πρ(ω) ≜ ℓ0
τ1−→ ℓ1

τ2−→ · · · τn−→ ℓn · · ·
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We say that a sample trace ρ(ω) of Π terminates if it eventually reaches a state (ℓF ,x)

where ℓF is the final (terminating) location of Π and x is any system state. Equivalently, a sample

run ρ(ω) of Π is terminating if its corresponding sample path πρ(ω) eventually reaches ℓF . We

call such a path terminating.

Example 4.1.2. Continuing with the PSTS of Example 4.1.1, we present two sample traces:

ρ1(ω) : ⟨ℓ4, (x : 0, y : 0, count : 0)⟩ τ1−→ ⟨ℓ4, (1, 2, 1)⟩
τ1−→ ⟨ℓ4, (1, 4, 2)⟩

τ1−→ ⟨ℓ4, (3, 6, 3)⟩

τ1−→ ⟨ℓ4, (3, 6, 4)⟩
τ1−→ ⟨ℓ4, (3, 8, 5)⟩

τ2−→ ⟨ℓ11, (3, 8, 5)⟩
id−→ ⟨ℓ11, (3, 8, 5)⟩

id−→ · · ·

ρ⊥(ω) : ⟨ℓ4, (x : 0, y : 0, count : 0)⟩ τ1−→ ⟨ℓ4, (0, 0, 1)⟩
τ1−→ ⟨ℓ4, (0, 0, 2)⟩

τ1−→ · · ·

where ρ1(ω) represents a terminating run identified by the self-loop id, and ρ⊥(ω) represents a

non-terminating run that takes transition τ1 forever. The corresponding sample paths are:

πρ1(ω) : ℓ4
τ1−→ ℓ4

τ1−→ ℓ4
τ1−→ ℓ4

τ1−→ ℓ4
τ1−→ ℓ4

τ2−→ ℓ11
id−→ ℓ11

id−→ · · ·

πρ⊥(ω) : ℓ4
τ1−→ ℓ4

τ1−→ · · ·

where πρ1(ω) is terminating and πρ⊥(ω) is non-terminating.

Finally, Figure 4.1 (Right) presents a histogram of 106 sample traces of the value of count

that reaches line 11.

4.2 Martingale and Supermartingale Expressions

This section provides the formal connection between polynomial stochastic transition systems

and (super-) martingale stochastic processes and their convergence properties.

Let Π : ⟨X,R, L, T , ℓ0,D0⟩ be a polynomial system. A function h[X] over the program

variables of Π is called a (polynomial) program expression if h : X → R is a (polynomial)

function from system states to real numbers. A flow-sensitive expression map is a function V

that maps each location ℓ ∈ L to a program expression Vℓ[X].
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4.2.1 Pre-Expectations

Inspired by the work of McIver and Morgan [121, 105] and related to the drift operator of

Markov processes [122] we define the notion of a pre-expectation operator preE. Operator preE

transforms the program expressions of a PSTS over the post-state variables e(x′) into expressions

of equal expected value over the current states obtained after one step of execution.

Definition 4.2.1 (Pre-Expectation across a Transition). Let Π : ⟨X,R, L, T , ℓ0,D0⟩ be a poly-

nomial stochastic transition system. Let e[X] be a program expression and V be a flow-sensitive

expression map over the variables of Π. Let τ ∈ T be an enabled transition (i.e., τ : ⟨ℓτ , φτ , fτ ⟩

and x |= φ) with forks (m1, gτ,1), . . . , (mj , gτ,j) and corresponding fork probabilities pτ,1, . . . , pτ,j.

The pre-expectation of e[X] across transition τ is a function preE(e, τ) : X → R defined as

follows:

∀x ∈ X, preE(e, τ)(x) ≜ ER[e(fτ (x, r))|x] =
j∑

i=1

pτ,i · ERc [e (gτ,i(x, rc))],

where ER[·|x] denotes the conditional expectation over the random choices r = (rb, rc) given the

system state x, and ERc [h(rc)] is the expected value of h with respect to rc. The pre-expectation

of V across transition τ is the program expression:

preE(V, τ) ≜
j∑

i=1

pτ,i · ER[Vmj (gτ,i(x, rc))].

Intuition. Notice this definition is equivalent to defining the pre-expectation of e[X] across

τ as the weighted average of e over all pre-states ⟨ℓτ ,x⟩, which under the update of a fork

(mi, gi(x, rc)) result in the post-states ⟨ℓ′,x′⟩ = ⟨mi, gi(x, rc)⟩, multiplied by the probability pτ,i

of selecting the fork. Similarly, the pre-expectation of V across τ is the weighted average of the

probability pτ,i of selecting a fork (mi, gτ,i) multiplied by the expected value of the target location

expression Vmi when the system variables are updated according to fork update gτ,i(x, r).

Given the piecewise polynomial definition of the system update function FT above, we can

define the pre-expectation transformation over the entire stochastic system Π.
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Definition 4.2.2. The pre-expectation of a program expression e[X] : X → R with respect to a

polynomial stochastic transition system Π : ⟨X,R, L, {τ1, ..., τn}, ℓ0,D0⟩ is a function preE(e,Π) :

X → R defined by

preE(e,Π)(x) ≜ ER [e(FT (x, r))|x] =
n∑

i=1

1(φi(x)) · preE(e, τi)(x), for all x ∈ X,

where φi is the guard of transition τi, and 1(φ) is the indicator function of predicate φ.

Next, we define the notion of martingale and supermartingale (program) expressions for a

polynomial stochastic transition system.

Definition 4.2.3. Let Π : ⟨X,R, L, T , ℓ0,D0⟩ be a polynomial stochastic transition system. Let

e[X] be a program expression over the program variables of Π. The expression e[X] is a super-

martingale expression for Π if and only if

∀x ∈ X, preE(e,Π)(x) ≤ e(x) (i.e.,ER [e(FT (x, r))|x] ≤ x) .

Expression e[X] is a martingale expression for Π if and only if

∀x ∈ X, preE(e,Π)(x) = e(x) (i.e.,ER [e(FT (x, r))|x] = x) .

Expression e[X] is an ε-additive supermartingale expression for some constant ε > 0 iff

∃∀x ∈ X, preE(e,Π)(x) ≤ e(x)− ε.

Expression e[X] is an α-multiplicative supermartingale expression for some constant α ∈ (0, 1)

if and only if

∃∀x ∈ X, preE(e,Π)(x) ≤ αe(x).

The following lemma holds respectively for any supermartingale, martingale, ε-additive and

α-multiplicative supermartingale expression e[X]. It shows that these supermartingale expressions

define corresponding supermartingale processes over the sample traces of the PSTS.

Lemma 4.2.1. Amartingale expression e[X] defines a martingale stochastic process {ei ≜ e(xi)}∞i=0.
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Proof. Immediate from Definition 4.2.3.

Example 4.2.1. Consider our motivating example PSTS of Example 4.1.1 and the program ex-

pression e1 : 10− x− y and suppose φτ1(x) holds, then:

preE(e1,Π) = preE(e1, τ1) = ER[10− x′ − y′ |x = (x, y, count)]

=

(
3

4

)
(10− ER(x+ r1)− (y + 2)) +

(
1

4

)
(10− x− y)

=

(
3

4

)
(10− (x+ 1)− (y + 2)) +

(
1

4

)
(10− x− y)

= (10− x− y)− 9

4
≤ 10− x− y = e1(x);

therefore, e1 is a supermartingale expression under τ1 (also under τ2 and, trivially, id) but an

ε-additive supermartingale expression (ε = 9
4) whenever φτ (x) holds.

Consider program expression e2 : 4x+ 4y− 9count:

preE(e2,Π) = preE(e2, τ1) = ER[4x
′ + 4y′ − 9count′ |x = (x, y, count)]

=

(
3

4

)
(4(x+ 1) + 4(y + 2)− 9(count+ 1)) +

(
1

4

)
(4x+ 4y − 9(count+ 1))

= (4x+ 4x− 9count) = e2(x).

This means e2 is a martingale expression.

Often, it is not possible to obtain a single expression that is a martingale, (ε-additive, or

α-multiplicative) supermartingale expression for the whole PSTS. However, we can extend the

notion of martingale expressions to flow-sensitive expression maps that provide the flexibility to

label individual locations with different program expressions.

Definition 4.2.4. The pre-expectation of a flow-sensitive expression map V w.r.t a polynomial

stochastic transition system Π : ⟨X,R, L, {τ1, . . . , τn}, ℓ0,D0⟩ is:

preE(V,Π)(x) ≜
n∑

i=1

1(φi(x)) · preE(V, τi)(x), for all x ∈ X.
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Definition 4.2.5. Let Π : ⟨X,R, L, T , ℓ0,D0⟩ be a PSTS. A flow-sensitive expression map V of Π

is a supermartingale expression map if and only if for every transition τ : ⟨ℓ, φτ , fτ ⟩ :

∀x ∈ Jφτ (x)K, preE(V, τ)(x) ≤ Vℓ(x),

that is, for any state ⟨ℓ,x⟩ in which τ is enabled the pre-expectation of V across τ is no more than

the value of the program expression Vℓ in that (source) state.

In the next two sections we present the qualitative reachability, persistence and recurrence

properties of interest and how to construct the required supermartingale expression maps. We

also prove that supermartingale expression maps V induce supermartingale processes {V (ρ(ω)}∞n=0

when evaluated along the runs ρ(ω) of a PSTS.

Drift Operator. Related to the pre-expectation operator is the notion of a drift operator.

Definition 4.2.6 (Drift Operator). Let Π be a polynomial stochastic transition system and h be a

function over the state of Π. The drift of h w.r.t. Π is the function DΠh : preE(h,Π)− h.

Wherever the system Π is clear from the context, we use Dh to denote the drift operator DΠ

applied to the function h.

4.3 Almost Sure Reachability ♢T

In this section, we provide two sets of sufficient conditions to prove that the executions of a

PSTS Π almost surely reach a set of target states T = {⟨ℓT ,x⟩ ∈ L×X | ℓT ∈ LT , x |= φT } for some

LT ⊆ L and some predicate φT over the system states. The approach is to identify supermartingale

expression maps as certificates that act as ranking supermartingales along the sample executions of

the polynomial stochastic transition system. We then use the ranking supermartingale convergence

properties to prove that the PSTS converges sample-wise almost surely to the target set T . The

conditions in these proof rules could be seen as constraints on the certificate functions to guarantee

the desired property.
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Almost Sure Termination. Let Π : ⟨X,R, L, T , ℓ0,D0⟩ be a PSTS with final location ℓF .

Let LT = {ℓF } be the target location and φT (x) : true be the target predicate. We refer to Π as

almost surely terminating if and only if the qualitative property J♢T K holds.

Definition 4.3.1 (Ranking Super Martingale). A non-negative supermartingale M : {Mn}∞n=0 is

called ranking if and only if it has one of the following properties:

(1) M is an c-additive supermartingale: by Definition 2.2.2,

∃ ε > 0, E(Mn+1(ω) | Fn) ≤Mn(ω)− ε, or

(2) M is an α-multiplicative supermartingale: by Definition 2.2.2,

∃α ∈ (0, 1), E(Mn+1(ω) | Fn) ≤ αMn(ω).

It is trivial to convert a lower-bounded c-additive supermartingale M (i.e., for all n ≥ 0,

Mn ≥ K for some K < 0) to a ranking supermartingale by adding a constant −K term to every

random variable Mn.

Proof Rules of Reachability. We provide proof rules for establishing almost sure reach-

ability properties that rely on Lyapunov-like certificate functions. One set of proof rules employs

α-multiplicative supermartingale certificates and we call this geometric (reach-geom); whereas

the other employs ε-additive supermartingale certificates and we call this additive (reach-add).

Let S ≜ L×X be the set of states and let s ∈ S denote a state (i.e., s : ⟨ℓ,x⟩ for some ℓ,x).

reach-geom: Geometric rule for reachability

(p1) (∀ s ∈ S) V (s) ≥ 0, Positive semidefinite V .

(p2) (∃ ε > 0) (∀ s ∈ S \ T ) V (s) ≥ ε, Lower bound outside T .

(p3) (∃ α ∈ (0, 1)) (∀ s ∈ S\T ) DV (s) ≤ (α− 1)V (s), Drift condition outside T .

♢T almost surely.
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reach-add: Additive rule for reachability

(p1) (∀ s ∈ S) V (s) ≥ 0, Positive semidefinite V .

(p2) (∃ ε > 0) (∀ s ∈ S \ T ) V (s) ≥ ε, Lower bound outside T .

(p4) (∃ c > 0) (∀ s ∈ S\T ) DV (s) ≤ −c, Drift condition outside T .

♢T almost surely.

Both reach-geom and reach-add state that a polynomial stochastic system Π satisfies

♢T almost surely if there exists a nonnegative certificate function V (condition (p1)) whose value

outside T is lower bounded by some ε > 0 (condition (p2)). Moreover, the drift conditions ensure

that in expected value V in the next decreases by some fixed non-zero quantity outside T (an

additive constant in (p4), or, a multiplicative factor in (p3)). These conditions together guarantee

that V is a supermartingale whose drift condition outside T forces its value to decrease along almost

all sample paths and eventually reach a value ε at which point the sample path “enters” T .

Soundness. We establish the soundness of the proof rules in a series of theorems. For

convenience we recall Theorem 4.3.1.

Theorem 4.3.1. Let M = {Mi}∞i=0 be nonnegative α-multiplicative supermartingale for some

α ∈ (0, 1). Then M converges almost surely (samplewise) to 0.

This result can be applied directly to stochastic transition systems. Let m(ℓ,x) be a nonneg-

ative α-multiplicative supermartingale expression (map) for a transition system Π. For a sample

trace ρ(ω) : {⟨ℓi,xi⟩}∞i=0 of Π, we say that the stochastic process m(ℓi,xi) converges almost surely

to 0 along all sample traces. Therefore, it almost surely crosses the level set m(ℓi,xi) = ε of (p2).

Lemma 4.3.1. Let m(ℓ,x) be a nonnegative α-multiplicative supermartingale expression map for

a polynomial stochastic transition system Π. Then m(ℓ,x) converges almost surely to 0, i.e.,

P
({
ω ∈ Ω

∣∣∃i ∈ N, ρ(ωi) = ⟨ℓi,xi⟩ ∈ T
})

= 1, for any ε > 0.

Proof. The result follows directly from the almost sure convergence of m(ℓ,x) to zero on sample

paths of Π and the choice of ε.
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Definition 4.3.2 (Multiplicative Super Martingale Ranking Function). A multiplicative super-

martingale ranking function (SMRF) V is a supermartingale expression map that satisfies the fol-

lowing:

• for all ℓ ̸∈ LT , for all x ∈ X, V (ℓ)[x] ≥ ε;

• for all ℓT ∈ LT , for all x ∈ φT , V (ℓT )[x] ∈ [0, ε);

• there exists α ∈ (0, 1) s.t. for each transition τ : ⟨ℓ, φ, fτ ⟩ with ℓ ̸∈ LT or φ ̸⊆ φT ,

(∀x ∈ X)φ(x) =⇒ preE(V, τ) ≤ αV (ℓ)[x].

In order to simplify notation, from here on we write V (ℓ,x) to mean V (ℓ)[x].

Theorem 4.3.2 (Soundness of reach-geom). A polynomial stochastic system Π satisfies the

almost sure reachability property ♢T if it has a multiplicative supermartingale ranking function V .

Proof. Follows directly from Definition 4.3.2 and Lemma 4.3.1 for the stochastic process:

{V (ρn(ω))}∞n=0 where ρn(ω) = ⟨ℓn,xn⟩ ∈ S.

Example 4.3.1. Consider a stochastic system Π with a single system variable x over R, a single

location ℓ, and a single self-looping transition with update: x′ := 0.1(1+w)x, where w is a standard

Gaussian random variable. We show that ♢(T : |x| ≤ 0.1) holds almost surely.

Consider the function V (ℓ, x) = x2, which is nonnegative on X (condition (p1)) and V (ℓ, x) ≥

0.01, for all x ∈ X\T (condition (p2)). Moreover, for all x ∈ X,

preE(V,Π) = Ew(V (ℓ, xn+1)|xn) = 0.02x2n, so DV (ℓ, x) ≤ −0.98V (ℓ, x).

Hence, V (ℓ, x) defines a 0.02-multiplicative supermartingale expression (condition (p3)).

Applying reach-geom, we conclude that ♢(−0.1 ≤ x ≤ 0.1) holds a.s.

Note 1. Note that the multiplicative certificate V (ℓ, x) in the example above works with reach-

add because the bound ε defines a minimum decrease constant c = −0.98 · 0.01 = −0.0098 in

condition (p4) when the system is outside the region T .
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Lemma 4.3.2. Every reach-geom certificate V is also a certificate for reach-add and if X is a

compact set then the converse holds.

Proof. Correspondence of conditions (p1), (p2) is immediate.

(⇒): We need to show that if V satisfies (p3) then V satisfies (p4) for some c > 0.

Fix α ∈ (0, 1) and let c = (1− α)ε. Then c > 0 and so:

preE(V,Π) ≤ αV ≤ V − (1− α)V

≤ V − (1− α)ε, since for all ⟨ℓ,x⟩ ̸∈ T, V (ℓ,x) ≥ ε,

≤ V − c.

(⇐): In general the converse does not hold as limx→∞
V (ℓ,x)−c
V (ℓ,x) = 1. Therefore, no such α exists in

general. However, over a compact (closed and bounded) X we can establish the converse.

Assume V satisfies (p4) on compact state-space X we want to show V satisfies (p3) for some

α ∈ (0, 1). Since X is compact, and V is continuous (V is polynomial), then by the Extreme Value

Theorem we know V achieves a maximum Vmax > 0. Let α = 1− c
Vmax

, then α ∈ (0, 1).

preE(V,Π) ≤ V − c, then

preE(V,Π)
V

≤ V − c

V
, since for all ⟨ℓ,x⟩ ̸∈ T, V (ℓ,x) ≥ ε > 0,

= 1− c

V
≤ 1− c

Vmax
, by definition of Vmax,

preE(V,Π) ≤
(
1− c

Vmax

)
V = αV.

The constraint of X being a compact set provides a sufficient condition to establish the

converse that can be checked directly by observing X. In Section 4.4.3 we propose a sufficient

condition on the dynamics: bounded increase of FT to establish certificate equivalence.

4.3.1 Direct Proof of Soundness of reach-add

In this section, we provide a technique for proving that a PSTS Π with a final location ℓF is

almost surely terminating under reach-add.
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Let M : {Mn}∞n=0 be a non-negative c-additive supermartingale for some c > 0. Let ε > 0

be a level set of M as in reach-add. A sample path of M is said to cross the ε-level set if for

some n ≥ 1, Mn(ω) ≤ ε.

Theorem 4.3.3. A nonnegative c-additive supermartingale a.s. crosses the ε-levelset for any ε > 0.

Proof. Let T = infn≥0Mn ≤ ε be the random variable that represents the stopping time then

M crosses the ε-level set. The stopped process denoted Mmin(n,T ) (or MT
n ) has sample paths

m0, . . . ,mt,mt,mt, . . .. Note that Mmin(n,T ) ≥ 0 over all sample paths.

Define a stochastic process Yn = Mmin(n,T ) + cmin(n, T ), for all n ≥ 0. In other words,

for each sample path yn = mn + cn if n ≤ T , and yn = mt + ct if n > T . Note that given a

sample path prefix m0, . . . ,mn of MT
n we can compute yn. Therefore, Yn is adapted to Mmin(n,T ).

Likewise, given y0, . . . , yn we can compute mmin(n,T ). Hence, the sample paths of Yn are one-to-one

correspondent with those of MT
n .

Lemma 4.3.3. The stochastic process {Yn}∞n=0 is a supermartingale (relative to MT
n ) and Yn ≥ 0.

Proof. The non-negativity of Yn for all n follows from the fact that MT
n ≥ 0 for all n and c > 0.

Next, we show that Yn is a s.m. For any sample path,

E(Yn+1 |Yn,Mn, T ) = E(Mn+1 |Yn,Mn) + cmin(n+ 1, T ).

We identify two cases: when (a) n+ 1 ≤ T , or (b) n+ 1 > T .

Case (a): E(Yn+1 |Yn,Mn, T ) = E(Mn+1 |Mn) + (n+ 1)c ≤Mn − c+ (n+ 1)c ≤ Yn.

Case (b): yn = mt + tϵ. We have E(Yn+1|Mn, Yn, T ) = mt + tϵ = yn.

In both cases, we conclude E(Yn+1|Mn, Yn, T ) ≤ Yn.

Recall that under the Supermartingale Convergence Theorem 2.2.2, a nonnegative super

martingale converges (samplewise) almost surely.

Therefore, with probability 1, a sample path y0, . . . , yn, . . . converges to a finite value Y (ω) =

ỹ. From the Supermartingale Convergence Theorem 2.2.2, it also follows that E(Y ) ≤ E(Y0).

Moreover, M0 = Y0 and in Lemma 4.3.3 we showed Mn ≤ EYn for all n ≥ 0.
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Lemma 4.3.4. For any convergent sample path y0, . . . , yn, . . ., the corresponding sample path

m0, . . . ,mn, . . . of M eventually crosses the ε-level set.

Proof. Convergence of yn to ỹ implies for any α > 0, there exists N such that ∀n ≥ N, |yn− ỹ| ≤ α.

For the sake of contradiction, assume the sample path of M doesn’t cross the ε-level set. Therefore,

the stopping time T = ∞. This means, mn = yn − nc for all n ≥ 0. Choosing α = ε, for any

n > N , mn ≤ ỹ + α− nε ≤ ỹ − (n− 1)ε. Therefore, for n > 1 + ỹ
c , we conclude that mn ≤ ε. This

contradicts our assumption that T = ∞.

To complete the proof of Theorem 4.3.3, we observe that (a) a sample path y0, . . . , yn, . . . of

{Yn} converges almost surely since {Yn} is a nonnegative s.m.; (b) for each convergent sample path

the corresponding (unique) path m0, . . . ,mn, . . . crosses the ε-level set; therefore, (c) any sample

path of {Mn} crosses the ε-level set almost surely.

Definition 4.3.3 (Additive Super Martingale Ranking Function). An additive supermartingale

ranking function (SMRF) η is a supermartingale expression map that satisfies the following:

• V (ℓ) ≥ ε for all ℓ ̸∈ LT , and for all ℓT ∈ LT , V (ℓT ) ∈ [0, ε];

• there exists a constant c > 0 s.t. for each transition τ : ⟨ℓ, φ, fτ ⟩ with ℓ ̸∈ LT or φ ̸⊆ φT ,

(∀x ∈ X)φ(x) =⇒ preE(V, τ) ≤ V (ℓ)[x]− c.

The SMRF definition above is a generalization of similar rules over discrete spaces, including

the probabilistic variant rule [121] and Foster’s theorem [72, 24, 25].

Theorem 4.3.4 (Soundness of reach-add). If a PSTS Π has an additive supermartingale ranking

function V then every sample execution of Π reaches the target set T (terminates) almost surely.

For any sample execution of Π, we define the process {Mn} where Mn = V (ℓn,xn) for all

n ≥ 0. It follows that {Mn} is a ranking supermartingale. The rest follows from Theorem 4.3.3.

Example 4.3.2. Consider the PSTS in Example 4.1.1 and Figure 4.2, the additive SMRF V (ℓ4) :

14− x− y and V (ℓ11) : x+ y− 10 proves almost sure termination.
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4.4 Almost Sure Persistence and Recurrence

We now turn our attention to proving almost sure persistence ♢□T and recurrence □♢T

properties of polynomial stochastic systems. Like reach-geom and reach-add all proof rules

involve finding a suitable “certificate” in the form of a stochastic analogue of a Lyapunov-like

function over the state-space S : L×X. The soundness of our approach (presented in Section 4.4.2)

relies on certificate functions behaving as supermartingale expressions over the state variables of

the stochastic system.

We begin by motivating these properties with an example from the literature and a caveat

on the proper use of SMRF from the previous section in establishing persistence properties.

Motivating Example: Room Temperature Control. In [4], Abate et al. present a

room temperature control problem subject to stochastic temperature perturbations. Suppose that

there are two adjacent rooms, whose temperatures change according to the following stochastic

difference equation:

x′i := xi + bi(x0 − xi) + a ·
∑
i̸=j

(xj − xi) + ci (1− σ (xi)) + νi, for i ∈ {1, 2},

where a = 0.0625, b1 = 0.0375, b2 = 0.025 are respectively the inter-room and external heat

convection constants, x0 = 6◦C is the outdoor temperature, c1 = 0.65, c2 = 0.6 are the heat units

supplied to the two rooms by the heater, and ν1, ν2 are i.i.d. stochastic random variables. The

behavior of the heater is governed by the controller unit term σ. We focus on the evolution of the

room temperatures within the range [6, 33]2.

Abate et al. construct a (nonlinear) sigmoidal controller σ(t) that keeps the temperatures

within a comfortable range S : [17, 22] × [16, 23] and focus on bounding the probability that the

system leaves S (i.e., stochastic safety) within finitely many steps under the influence of Gaussian

noise. Figure 4.3 shows 100 sample executions of the system when the controller is approximated

with a degree-7 polynomial:

σ(t) : 29.2− 13.42t+ 2.55t2 − 0.26t3 + 0.015t4 − 5.13× 10-4t5 + 9.23× 10-6tt − 6.87× 10-8t7

under two different types of random noise: uniform U on a given range and normal N .
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Figure 4.3: 100 simulations of the two-room controller system, with initial temperatures x1,
x2 uniformly drawn from [15, 22]2, under two different types of stochastic noise: (left) νi ∼
U(−0.01, 0.01), with the red horizontal lines indicating the intervals [17.8, 18.7] (for room 1) and
[18.4, 19.3] (for room 2); (right) νi ∼ N (0, 0.25), with the red horizontal lines indicating the
intervals [16.9, 19.6] (for room 1) and [17.3, 20.2] (for room 2).

Controller σ was originally designed to keep the system in the comfortable range S with finite-

time (100 min) guarantees in mind. We prove that under mild stochastic disturbances (left) the

system satisfies the almost sure persistence property ♢□S, i.e., with probability 1 the system

eventually enters S and stays there forever. This is demonstrated by the proof rule persist-geom

of Section 4.4.1 and the certificate V (x1, x2) : (x1 − 18.3)2 + (x2 − 18.8)2. When the level of

stochastic disturbance is increased (right) the almost sure persistence property no longer holds.

This is consistent with the results in [4]; however, a weaker, almost sure recurrence property:

□♢(16.9 ≤ x1 ≤ 19.6∧ 17.3 ≤ x2 ≤ 20.2) holds, i.e., with probability 1 the system visits the region

infinitely often. This is demonstrated by proof rule rec of Section 4.4.4 using the same certificate

function V .

Caveat: Additive SMRF for a.s. ♢□(T ). Given an additive supermartingale ranking

function m, let Mκ : {⟨ℓ,x⟩ ∈ L × X| m(ℓ,x) ≤ κ} denote the κ-sublevel set of m, for κ ∈ R.

For any κ such that Mκ ̸= ∅, we can prove ♢(Mκ) holds a.s. Does it follow immediately that

♢□(Mκ) also holds? If we were to use our intuition from the deterministic case, it seems clear that

m(ℓ,x) decreases continuously forever by at least some ε > 0, and therefore, it seems intuitive that

♢□(m(ℓ,x) ≤ κ) should hold. Surprisingly (or not), the following counterexample shows that in

general, we cannot conclude a property ♢□(Mκ) holds almost surely.

Example 4.4.1 (MoonWalk). The MoonWalk system consists of a random walk over the

state-space X : Z≤0 of the nonpositive integers:
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xn+1 :=

 xn − 1 with prob. p(xn),

0 with prob. 1− p(xn),

wherein p(x) : x−0.5
x−1 = 1 − 0.5

1−x , for x < 0, and p(0) = 1. In other words, the random walk either

chooses to decrease x by 1 with probability p(x) or jumps to 0 with probability 1− p(x). Since there

is a single location L = {ℓ} we omit it from the discussion. The initial state follows a negative

Poisson distribution.

The function m(x) : x is an additive supermartingale expression for the MoonWalk system:

E(m(xn+1)|xn < 0) = xn−0.5
xn−1 (xn − 1) + 0 ·

(
−0.5
xn−1

)
= xn − 0.5.

For xn = 0, the pre-expectation is xn − 1.

Therefore, m[x] : x is an additive supermartingale expression. Yet the sublevel sets of the

function m cannot be used for establishing persistence properties, because of the following result.

Lemma 4.4.1. For any κ < 0, the probability that a sample path of MoonWalk satisfies ♢□(x ≤

κ) is 0.

Proof. The proof relies on events Tail(η, L) that are defined as the event that the system has an

initial prefix of length L > 0 reaching x ≤ κ, and the rest of the execution satisfies x ≤ κ forever.

First, we prove that for any κ, P(Tail(κ,L)) = 0 for all L. Note that Tail(η, L) ⊆ Tail(η, L+1), and

P(Tail(η, L)) ≤
∞∏

j=−η

p(−j) =
∞∏

j=−η

(
1− 0.5

j + 1

)
= 0 .

The last product equals zero since the sum
∑∞

j=−η
0.5
j+1 diverges. (See Lemma 4.4.2 below.) Event

♢□(x ≤ κ) can be seen as
∪∞

L=1 Tail(κ,L). Since each Tail(κ,L) almost never happens (has zero

measure), it follows that ♢□(x ≤ κ) almost never happens.

For completeness, we provide a simple proof to the claim
∏∞

j=−T

(
1− 0.5

j+1

)
= 0, which ap-

peared in the proof of Lemma 4.4.1.

Lemma 4.4.2. For any sequence {ai}i≥0 ⊂ (0, 1),
∏∞

i=0(1−ai) ∈ [0, 1]. Moreover,
∏∞

i=0(1−ai) = 0

if and only if the infinite sum
∑∞

i=0 ai diverges.
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Proof. Let sk =
∏k

i=0(1 − ai) for all k ≥ 0. Then {sk}k is a nonincreasing sequence in (0, 1),

implying that {sk}k always converges, i.e.,
∏∞

i=0(1 − ai) ∈ [0, 1]. The equivalence can then be

shown using the inequality −t
1−t < log(1− t) < −t, which holds for any t ∈ (0, 1) and the inequality

log(1− t) > −3
2 t which holds for any t ∈ (0, 0.5).

If
∏∞

i=0(1− ai) > 0, then

−
∞∑
i=0

ai >

∞∑
i=0

log(1− ai) = log

( ∞∏
i=0

(1− ai)

)
∈ R,

implying that
∑∞

i=0 ai ≥ 0 converges.

Conversely, suppose that
∏∞

i=0(1− ai) = 0; we show that
∑∞

i=0 ai diverges. Without loss of

generality suppose that limi ai = 0. Let K̄ be such that ak ≤ 0.5 for all k ≥ K̄. Then for any

L ∈ R, there exists an integer K > K̄ such that
∑K

i=K̄+1 ai ≥ L. In fact, pick K > K̄ satisfying

sK ≤ exp
(
−3

2L
)
sK̄ (which is possible since limk sk = 0). Then

−3

2

K∑
i=K̄+1

ai <

K∑
i=K̄+1

log(1− ai)

= log(sK)− log(sK̄) ≤ −3
2L,

i.e.,
∑K

i=K̄+1 ai ≥ L. This together with the nonnegativity of ai’s shows that the sum
∑∞

i=0 ai

diverges.

Using an additive supermartingale expression m to prove tail invariance properties of the

form ♢□(m(x) ≤ κ) requires additional assumptions on the expression m. One such condition

is the bounded increase (Definition 4.4.1 ahead) which is assumed in Theorem 4.4.3, in order to

establish the soundness of proof rules for persistence properties using additive supermartingale

ranking functions.

4.4.1 Proof Rules for Persistence

We provide a series of proof rules for proving persistence properties. The relation between

these rules is also examined.
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persist-geom: Geometric rule for persistence

(p1) (∀ s ∈ S) V (s) ≥ 0, Positive semidefinite V .

(p2) (∃ ε > 0) (∀ s ∈ S \ T ) V (s) ≥ ε, Lower bound outside T .

(p3) (∃ α ∈ (0, 1)) (∀ s ∈ S\T ) DV (s) ≤ (α− 1)V (s), Drift condition outside T .

(p5) (∀ s ∈ T ) DV (s) ≤ 0, Drift condition inside T .

♢□(T ) almost surely.

persist-add: Additive rule for persistence

(p1) (∀ s ∈ S) V (s) ≥ 0, Positive semidefinite V .

(p2) (∃ ε > 0) (∀ s ∈ S \ T ) V (s) ≥ ε, Lower bound outside T .

(p4) (∃ c < 0) (∀ s ∈ S \ T ) DV (s) ≤ −c, Drift condition outside T .

(p5) (∀ s ∈ S) DV (s) ≤ 0, Drift condition inside T .

♢□(T ) almost surely.

Both persist-geom and persist-add state that a polynomial stochastic system Π satisfies

♢□T almost surely if there exists a nonnegative certificate function V (condition (p1)) whose value

outside T is lower bounded by some ε > 0 (condition (p2)). Moreover, the drift conditions ensure

that in expected value V in the next step does not increase inside T (condition (p5)), and decreases

by some fixed non-zero quantity outside T (an additive constant in (p4), or, a multiplicative factor

in (p3)). Intuitively, these conditions together guarantee that V is a supermartingale whose drift

condition outside T forces its value to decrease along almost all sample paths and eventually reach

a value ε at which point the sample path is “forced” to enter T and persists forever.

Example 4.4.2. Consider the stochastic system Π of Example 4.3.1. We show that using the same

certificate V (ℓ, x) = x2 the almost sure persistence property ♢□(T : |x| ≤ 0.1) holds.

We already established that V (ℓ, x) is nonnegative on X (condition (p1)), and V (ℓ, x) ≥ 0.01

for all x ∈ X \ T (condition (p2)). Also, for all x ∈ X,

preE(V,Π) = Ew(V (ℓ, xn+1)|xn) = 0.02x2n, so DV (ℓ, x) ≤ −0.98V (ℓ, x).
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Hence, V (ℓ, x) defines a 0.02-multiplicative supermartingale expression (conditions (p3), (p4)).

Applying persist-geom, we conclude that ♢□(−0.1 ≤ x ≤ 0.1) holds a.s.

Example 4.4.3. For the polynomial stochastic system of Example 2.2.4 over the state-space X =

[0, 1], a single location ℓ and a self-looping transtion τ , we establish the almost sure persistence

property ♢□(x ≤ 0.05 ∨ x ≥ 0.95).

Consider the certificate function V (ℓ, x) = x(1− x). For all x ∈ X, V (ℓ, x) ≥ 0, and for all

x ∈ X \ T = (0.05, 0.95), V (ℓ, x) ≥ 0.0475 (conditions (p1), (p2)). Next, note that preE(V,Π) =

preE(V, τ) = x(1− x)(1− x+ x2), and DV (x) = x(1− x)(x2 − x). It is easy to check that for all

x ∈ (0.05, 0.95), DV (x) ≤ −0.00225625, and for all x ∈ [0, 0.05]∪ [0.95, 1], DV (x) ≤ 0 ((p4), (p5)).

Applying persist-add, we conclude that ♢□(x ≤ 0.05 ∨ x ≥ 0.95) holds a.s.

Note 2. Similar to the certificates for reach-add and reach-geom, in both of the above examples

we could interchange certificates V (ℓ, x) to be used with either persist-geom or persist-add:

DV (x) ≤ −0.98x2 ≤ −0.0098, for all x ∈ X \ T , in the first case; and DV (x) ≤ x(1− x)(x2 − x) ≤

−0.0475V (x) in the second. We expand on this point in Section 4.4.3.

Finally, if the set of locations L is a singleton we omit it from the description of Π.

Strong Persistence. We strengthened proof rules reach-geom and reach-add by re-

quiring a drift condition to hold inside the target region T . As a result we are able to prove stronger

properties. Rules persist-geom and persist-add present sufficient conditions under which certifi-

cates V prove that ♢□T holds almost surely. Unfortunately, the difference in constraints inside and

outside T may force V to be a high degree polynomial (or a piecewise polynomial function). To sim-

plify constraints and make the search for certificates for almost sure persistence properties tractable

we propose a stronger version of proof rules for persistence of the form: (∀ ε > 0) ♢□(V (s) ≤ ε).

spersist-geom: Geometric rule for strong persistence

(p1) (∀ s ∈ S) V (s) ≥ 0, Positive semidefinite V .

(p6) (∃ α ∈ (0, 1)) (∀ s ∈ S) DV (s) ≤ (α− 1)V (s), Drift condition.

(∀ ε > 0) ♢□(V (s) ≤ ε) almost surely. ▶
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spersist-geom: Geometric rule for strong persistence (cont)

Similarly, we provide an additive version of strong persistence rule. We say a function V (ℓ,x)

has bounded increase over Π iff there is a constant C > 0 such that, for every possible next state

⟨ℓ′,x′⟩ reached from ⟨ℓ,x⟩, |V (ℓ′,x′)− V (ℓ,x)| ≤ C.

spersist-add: Additive rule for strong persistence

(p7) (∃ c < 0) (∀ s ∈ S) DV (s) ≤ −c, Drift condition.

(p8) (∀ s ∈ S) V (s) has bounded increase, (See above, and Def. 4.4.1 on page 60).

(∀ K) ♢□(V (s) ≤ K) almost surely.

sperist-geom presents a stronger, yet simpler to state and encode, version of the drift

requirement dictated by persist-geom (viz. inside the region T ). Similarly, spersist-add does

not insist on V being positive definite but only V decreasing in expectation by −c everywhere. The

benefit of the stronger formulations of the persistence rule is that each level set of the Lyapunov-like

certificate V acts as a tail invariant: a set S that almost all traces of the stochastic system reach

and asymptotically confine to.

4.4.2 Soundness of Persistence Rules

The soundness of spersist-geom and persist-geom follow closely the proof of soundness

of reach-geom and rely on the convergence of α-multiplicative supermartingales.

Lemma 4.4.3. Let Π : ⟨X,R, L, T , ℓ0,D0⟩ be a polynomial stochastic transition system. Let ρ

map each sample ω ∈ Ω to the corresponding sample path of Π, i.e., ρ(ω) : ⟨ℓ0,x0⟩ , ⟨ℓ1,x1⟩ , . . .

and let ρm(ω) : ⟨ℓm,xm⟩. If V is an α-multiplicative supermartingale expression of Π for some

α ∈ (0, 1), then {V (ρi(ω))}∞i=0 is an α-multiplicative supermartingale.
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Proof. Fix any v ∈ R such that ∃ω ∈ Ω satisfying V (ρn(ω)) = v. For any ⟨ℓ, x⟩ ∈ L×X satisfying

V (ℓ, x) = v, E(V (ρn+1(ω)) | ρn(ω) = ⟨ℓ, x⟩) ≤ αv, by definition of α-multiplicative supermartingale

expressions. Hence, E(V (ρn+1(ω)) |V (ρn(ω)) = v) ≤ αv, i.e, {V (ρn(ω))}∞n=0 is an α-multiplicative

supermartingale.

Now we prove the soundness of spersist-geom.

Theorem 4.4.1 (Soundness of spersist-geom). A polynomial stochastic system Π satisfies the

almost sure persistence property (∀ ε > 0) ♢□(V (ℓ,x) ≤ ε) if V is a function satisfying conditions

(p1), (p6) of spersist-geom.

Proof. Fix any ε > 0. By Lemma 4.4.3, {V (ρn(ω))}∞n=0 is a nonnegative α-multiplicative super-

martingale, satisfying the condition of Theorem 4.3.1. Hence,

Pr({ω ∈ Ω | (∃n0) (∀n ≥ n0) V (ρn(ω)) ≤ ϵ}) ≥

Pr({ω ∈ Ω | lim
n→∞

V (ρn(ω)) = 0}) = 1,

i.e., ♢□(V (x) ≤ ε) holds a.s.

The proof of the soundness of persist-geom is similar.

Theorem 4.4.2 (Soundness of persist-geom). A polynomial stochastic system Π satisfies the

almost sure persistence property ♢□(T ) if there exists a function V that satisfies conditions (p1)-

(p3),(p5) of persist-geom.

Proof. Note that ♢□(T ) holds a.s. if and only if

Pr({ω ∈ Ω | (∀n0) (∃n ≥ n0) ρn(ω) /∈ T}) = 0.

Since V satisfies conditions (p1)-(p4), it suffices to show that Pr({ω ∈ Ω |φ(ω)}) = 0, where φ is

the predicate:

φ(ω) : (∀n0) (∃n ≥ n0) V (ρn(ω)) ≥ ε ∧ preEV (ρn(ω)) ≤ αV (ρn(ω)).
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Let ω ∈ Ω be such that φ(ω) is true. Then there is an infinite sequence of indices {nℓ}∞ℓ=1 such that

V (ρnℓ
(ω)) ≥ ϵ > 0 ∧ preEV (ρnℓ

(ω)) ≤ αV (ρnℓ
(ω)).

Define the stochastic process {Mn}n by

Mn :
V (ρn(ω))

αℓ
, where nℓ < n ≤ nℓ+1.

We show that {Mn}n is a nonnegative supermartingale; following similar arguments in the proof of

Theorem 4.3.1, the nonnegative supermartingale {V (ρn(ω))}n converges to 0 a.s. This implies that

φ(ω), which contains the requirement that V (ρn(ω)) ≥ ε infinitely often, holds with probability

zero. In fact, following the same arguments in Lemma 4.4.3, for any v ∈ V (ρn(Ω)),

E(V (ρn+1(ω)) |V (ρn(ω)) = v) ≤


αv, if n = nℓ for some ℓ,

v, otherwise.

When n = nℓ for some ℓ, for all m ∈ R,

E(Mnℓ+1|Mnℓ
= m) = E

(
V (ρnℓ+1(ω))

αℓ+1

∣∣∣∣∣ V (ρnℓ
(ω))

αℓ
= m

)

≤ 1

αℓ+1
· (α · αℓm) = m.

When nℓ < n < nℓ+1 for some ℓ (so n+ 1 ≤ nℓ + 1), for all m ∈ R,

E(Mn+1|Mn = m) = E

(
V (ρn+1(ω))

αℓ

∣∣∣∣∣ V (ρn(ω))

αℓ
= m

)

≤ 1

αℓ
· (αℓm) = m.

Hence {Mn}n is a nonnegative supermartingale. By the Supermartingale Convergence Theo-

rem 2.2.2, Mn convergence samplewise almost surely. Since α ∈ (0, 1) and {nℓ}ℓ is an infinite

sequence, {V (ρn(ω))}n converges to 0 a.s. Hence,

Pr({ω ∈ Ω |φ(ω)})

≤ Pr({ω ∈ Ω | (∀n0) (∃n ≥ n0) V (ρn(ω)) ≥ ε ∧ {Mn}n is a nonneg. supermartingale}),

which is 0, implying that ♢□(T ) holds a.s.
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Necessity. The two necessary conditions on the multiplicative supermartingale m(ℓ,x) are

α ∈ (0, 1) and m(ℓ,x) nonnegative. We illustrate their necessity through the following example.

Example 4.4.4. Consider a stochastic transition system with a single variable x defined over the

state space [0,∞) with two self-loop transitions τ1 and τ2. Transition τ1 has a guard x ≥ 1 and

does not alter the value of x. Transition τ2 has a guard x < 1 and chooses between x′ := 2x or

x′ := x
2 with equal probabilities. That is:

x′ :=



x if x ≥ 1, and

2x if x < 1,with prob.12

x
2 if x < 1,with prob.12

The initial value of x is exponentially distributed over [0,∞). Note that m(x) : x is a nonnegative

α-multiplicative supermartingale only when α = 1. Clearly, m does not converge almost surely to

zero.

Consider another transition system involving x ∈ R and a single transition with two forks:

x′ := x with probability 2
3 , and x

′ := −x with probability 1
3 . Clearly, m(x) : x is a 1

3 -multiplicative

supermartingale. However, m is not nonnegative over the state-space R, so m does not prove any

persistence property. Indeed, ♢□(x≤1) is not a tail invariant for the system.

4.4.3 Relations Between Proof Rules

In Section 4.3 we proved the equivalence of certificates for reachability properties (Lemma 4.3.2).

In Note 2 we alluded to the fact that certificates for rule persist-geom can equivalently be used for

rule persist-add to prove persistence properties of polynomial stochastic systems. The following

result establishes the relationship between geometric and multiplicative proof rules.

Definition 4.4.1 (Bounded Increase). An expression m[x] has bounded increase for a stochastic

transitions system Π iff there exists M > 0 so that for all possible states x ∈ X and all possible

next states x′ reachable from x, |m(x′)−m(x)| ≤M . A flow-sensitive expression map V (ℓ,x) has

bounded increase iff there exists MV > 0 s.t. for all ⟨ℓ,x⟩ ∈ S, |V (ℓ′,x′)− V (ℓ,x)| ≤MV .
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spersist-geom spersist-add

persist-geom persist-add

rec

reach-geom reach-add

log(·)

λ(·)

Theorem 4.4.3

(p5) =⇒
(r4) (p5

) =⇒
(r4

)

Lemma 4.3.2

Figure 4.4: Diagram of the relations between persistence rules: double arrows denote a logical
implication between rules, single arrows denote conversion of certificates via the labelling function.

We give an example of bounded increase expressions, which do not have to be bounded

functions: whether a particular expression m[x] has bounded increase on a system depends as

much on the system itself as on the growth of m.

Example 4.4.5. Consider a stochastic system over R, in which xn+1 := xn − 1 + wn, with wn a

uniform random variable over [−1, 1]. Then the function m(x) : x has bounded increase property.

If each wn is a Gaussian random variable, then m(x) does not satisfy the bounded increase

property. Restricting the set of support of distribution wn to a compact set (by truncation), however,

allows x to satisfy the bounded increase property again.

Returning to the MoonWalk system in Example 4.4.1, the additive supermartingale m(x) :

x, whose sublevel sets do not prove any tail invariance property (due to Lemma 4.4.1), does not

satisfy the bounded increase property since it is possible to move from x = −j, for any j > 0, to

x = 0 with nonzero probability.

From Additive to Multiplicative Supermartingales. In order to get the key points

of the proof across we present a version using a supermartingale expression certificate. This proof

extends to supermartingale ranking functions where m(s) = V (ℓ,x) and the argument is lifted over
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the statespace S = L×X.

Let Π be polynomial stochastic systems with state-space X. Let X denote the Borel mea-

surable sets of X. Then (X,X ) is the Borel measurable space over system states of Π.

Definition 4.4.2. A Markov kernel P over (X,X ) is a mapping

P (x, S) = Pr{xn+1 ∈ S | xn = x}, x ∈ X,S ∈ X ,

with the following two properties:

• for each x ∈ X, function p mapping S 7→ P (x, S) is a probability measure;

• for each S ∈ S, function x 7→ P (x, S) is measurable.

The kernel P is called Markov (or memoryless) because when making the choice for xn+1

it is oblivious to the entire history of the stochastic process {xi} except for its current value xn.

P is an extension of the probability transition matrix over the infinite state-space X that for each

state x, P induces a probability measure p(x′|x) over the possible next states x′ starting from the

current state x.

Given a transition system Π, it corresponds to a Markov process over (X,X ) with a Markov

kernel operator P (x, S) is defined as follows: let ĥS : preE(1(S),Π) be the pre-expectation operator

applied to the indicator function over the set S according to the system Π. It follows that P (x, S) =

ĥS(x).

Likewise, given a system specified as a Markov kernel P defined through a measure p(x′|x),

the pre-expectation operator ĥ : preE(h) is defined as the integral:

preE(h)[x] :
∫
X
h(x′)dp(x′|x)

Theorem 4.4.3. Let m(x) be an ε-additive supermartingale expression that has bounded increase

in Π. Then there exist positive constants λ > 1 and α < 1 such that λm(x) is an α-multiplicative

supermartingale expression. Moreover, let κ ∈ R be such that {x ∈ X | m(x) ≤ κ} is nonempty.

Then the system Π satisfies the tail invariance property m(x) ≤ κ almost surely.
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Proof. Let m be the additive supermartingale expression. Then there exists ε > 0 such that

E(m(x′) | m(x)) =

∫
X
m(x′)dp(x′|x) ≤ m(x)− ε.

The expression m is bounded; therefore, there exists M ≥ 0 such that ∀x,x′ ∈ X, (m(x′)−

m(x)) ≤M . We want to show that there exist λ > 1, α ∈ (0, 1) such that∫
X
λm(x′)p(x′|x)dx′ ≤ αλm(x), ∀x ∈ X.

This condition is equivalent to showing that for all x ∈ X,∫
X
λm(x′)−m(x)p(x′|x)dx′ ≤ α.

Let m̂ denote m(x′) and m denote m(x). Let f(x, λ) =
∫
X λm̂−mdp(x′|x). It is easy to see that

∀x ∈ X and for all λ > 1, f(x, λ) > 0. We know f(x, λ) is continuous and it is easy to check that

f(x, 1) = 1. Moreover,

∂

∂λ
f(x, λ) =

∫
X

∂

∂λ
λm(x′)−m(x)dp(x′|x)

=

∫
X
(m̂−m)λm̂−m−1dp(x′|x) .

Therefore, at λ = 1, we obtain

∂f

∂λ
=

∫
X
(m̂−m)dp(x′|x) ≤ −ε .

Next, we obtain

∂2

∂λ2
f(x, λ) =

∫
X
(m̂−m)(m̂−m− 1)λm̂−m−2dp(x′|x)

≤M(M − 1)λM−2,

Now consider an interval λ ∈ [1, 1+∆] for which,M(M−1)λ(M−2) ≤ K. Without loss of generality,

we can also choose a K such that K ≥ ϵ2.

The Taylor expansion of f(x, λ) around λ = 1 + δ and δ ∈ [0,∆]:

f(x, 1 + δ) = f(x, 1) + δ ∂
∂λf(x, 1) +

δ2

2
∂2

∂λ2 f(x, θ)

≤ 1− ϵδ + K
2 δ

2
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The last inequality arises from the facts that ∂f
∂λ |λ=1 ≤ −ε and ∂2f

∂λ2 ≤ K for λ ∈ [1, 1 + ∆].

Choosing δ = ϵ
K , we obtain,

f(x, 1 + δ) ≤ 1− ϵ2

K
+

ϵ2

2K
= 1− ϵ2

2K

f
(
x, 1 +

ϵ

K

)
∈ (0, 1− ϵ2

2K
)

Let us choose λ = 1 + ϵ
K and α = 1− ϵ2

2K . We now note that for all x ∈ X,∫
X
λm(x′)dp(x′|x) ≤ αλm(x).

Finally, the tail invariance property ♢□(m(x) ≤ κ) follows from Theorem 4.3.1.

As a corollary we can state the following result:

Theorem 4.4.4 (Soundness of persist-add). Let m(x) be a bounded increase, ε-additive super-

martingale expression. Let T be any number such that {x ∈ X | m(x) ≤ T} is nonempty. Then

the system Π satisfies the tail invariance property m(x) ≤ T almost surely.

In fact, it is possible to prove the converse of Theorem 4.4.3.

Lemma 4.4.4. Let m(x) be a positive α-supermartingale expression for α ∈ (0, 1). For ε = log(α),

the expression mlog(x) = log(m(x)) is an ε-additive supermartingale expression.

Proof. The result follows immediately by an application of Jensen’s Inequality to the concave,

monotone function log(·).

This shows that any positive α-multiplicative supermartingale expression used to prove a tail

invariant property has an equivalent additive supermartingale (more precisely, SMRF) formulation.

The following example demonstrates, however, that sometimes the α-supermartingale formulation

may be more natural to employ.

Example 4.4.6. Figure 4.5 shows a nonlinear Markov jump system with two modes q1, q2 and

two state variables x : (x, y) that evolve according to the mode-dependent difference equations. The

system jumps between modes with equal probability.
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Mode q1
x′ := 0.4(x+ xy)
y′ := 0.4

(
1
3
x+ 2

3
y + xy

) Mode q2
x′ := 0.4

(
x+ y + 2

3
xy

)
y′ := 0.4

(
2y + 2

3
xy

)

1
2

1
2

1
2

1
2

Figure 4.5: A two-state nonlinear Markov jump system with two modes of evolution: q1 and q2.
Evolution in each mode is defined by the corresponding difference equations. Transition between
modes occurs with equal probabilities.

Observe that 0 is an equilibrium and X : [−0.5, 0.5]2 is an invariant of the system, i.e., all

sample paths starting in X, stay in the set forever. Figure 4.6(a) shows the sample paths that start

inside X converge towards 0. We establish that the persistence property ♢□(|x| ≤ 0.1 ∧ |y| ≤ 0.1)

holds almost surely over all executions of the system, by synthesizing the nonnegative certificate

function V (x) : 2.3x2 + 4.15xy + 3.7y2. After one time step, the expected value of V is at most

1
2 -fraction of its original value, i.e., (∀x ∈ X) E(V (x′)|x) ≤ 1

2V (x). Figure 4.6(b) plots the function

V over the sample paths, showing its convergence. We use the certificate V (x) in Persist-Geom

(page 55) to establish the required property.

Outside X, the system appears unstable as shown in Figure 4.6(c), yet the behaviors approach

x = y asymptotically. Using the certificate V̂ (x) : (x − y)2 in spersist-geom (page 56) we can

prove that (∀ ε > 0) ♢□(|x− y| ≤ ε).

Relations Between Proof Rules. Figure 4.4 summarizes the relationship between the

different proof rules for establishing persistence properties of a polynomial stochastic system. We

first establish the equivalence of certificates for rules persist-geom and persist-add as alluded

to in Note 2.

Lemma 4.4.5. Every persist-geom certificate V is also a certificate for persist-add and vice-

versa.

Proof. The proof follows directly from the definition of D and the lower bound ε in condition

(p2).
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(a) (b)

(c) (d)

Figure 4.6: Sample paths of the Markov jump system described in Figure 4.5.

Under some technical conditions, it is possible to prove the converse of Theorem 4.4.3. This

shows that any positive α-multiplicative supermartingale expression used to prove a tail invariant

property has an equivalent additive supermartingale (more precisely, SMRF) formulation and vice

versa.

Incompleteness. We demonstrate that although sound, our approach is incomplete. The

existence of a nonnegative α-multiplicative supermartingale expression or a SMRF of bounded

increase is sufficient but not a necessary condition for the system to almost surely satisfy a tail

invariant property.

Example 4.4.7 (Incompleteness). Consider the MoonWalk system with modified probability

p(x) : 1 − 0.5
(x−1)2

, for x < 0, and p(0) = 1. The probability of the event {x > κ} is
∑∞

j=−κ
0.5

(j+1)2
,

which converges. By the Borel-Cantelli Lemma [61, 2.3.1], Pr(x > κ i.o.) = 0 holds, i.e., the tail

invariant ♢□(x < κ) holds; however, the system does not have the bounded increase property.
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4.4.4 Proof Rule for Recurrence

We now focus on proof rules for proving the almost sure recurrence property: □♢(T ), i.e., T

is visited infinitely often by almost all sample paths. The proof rule is almost identical to a related

rule that establishes “positive recurrence” in Markov chains [122].

rec: Rule for Recurrence

(r1) (∀ s ∈ S) V (s) ≥ 0, Positive semidefinite V .

(r2) (∃ ε > 0) (∀ s ∈ S \ T ) V (s) ≥ ε, Lower bound outside T .

(r3) (∃ c > 0) (∀ s ∈ S \ T ) DV (s) ≤ −c, Drift condition outside T .

(r4) (∃ H) (∀ s ∈ T ) DV (s) ≤ H, Bounded Drift inside T .

□♢(T ) almost surely

Condition (r4) guarantees that Π does not make unbounded jumps so that {V (ρn(ω))}∞n=0

reaches (reach-add: (r1)-(r3)) almost surely within finite time to the target set T .

4.5 PSTS with Bounded Nondeterminism

In this section we relax the “No Nondeterminism” restriction in our transition model with

a bounded form of nondeterminism (see Ferrer et al. [67], Chatterjee et al. [36, 35] for similar

extensions). Specifically, we introduce a new set of nondeterministic variables U = {u1, . . . , uq}

disjoint from X and R that range over a bounded domain U . Transition guards φτ are predicates

over the system X and the nondeterministic variables U . Transition update functions are polyno-

mial functions of the joint state x, r,u of the system, stochastic, and nondeterministic variables.

We introduce the nondeterministic variables U with the goal to remove the mutual exclu-

sion (i ̸= j =⇒ φi(x) ∧ φj(x) = false) restriction on the transition guards of a PSTS. This

means that for a given state ⟨ℓ,x⟩ ∈ L×X more than one transition is potentially enabled. Thus, a

single step of execution of the model could result in a set of distributions {D′
1, . . .D′

p} over the post

states (one for each enabled transition). By lifting transition guards to be mutually exclusive
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predicates over x,u instead, we allow for the nondeterministic choice of which enabled transition

is selected on every step to be resolved by a transition scheduler.

Definition 4.5.1 (Transition Scheduler). Let Π : ⟨X,R,U , L, T , ℓ0,D0⟩ be a polynomial stochastic

transition system over a (filtered) probability space (Ω, E , {Fn}∞n=0, P ). Let T = {τ1, . . . τp} the set

of transitions and suppose mutual exclusion is not necessarily enforced for the transition guards,

i.e., for transitions τi : ⟨ℓ, φi, fi⟩, τj : ⟨ℓ, φj , fj⟩, ∃ui,uj ∈ U , φi(x,ui) ∧ φj(x,uj) is satisfiable.

A transition scheduler ϕ : X × N → U is an Fn−1-measurable function such that for any

state ρn(ω) = ⟨ℓn,xn⟩:

ϕ(xn, n+ 1) = un+1 =⇒ (xn,un+1) |= φj ∧ ℓn = ℓj ,

i.e., the scheduler ϕ resolves all nondeterministic choice u and thereby selects (schedules) a single

enabled transition τj : ⟨ℓj , φj , fj⟩ ∈ T . We denote by Φ the set of all transition schedulers.

Given a transition scheduler ϕ ∈ Φ, the execution under ϕ of the nondeterministic PSTS

proceeds on every step n by first selecting an enabled transition τj from state ⟨ℓn−1,xn−1⟩ accord-

ing to un = ϕ(xn−1, n), then updating location and system variables via the transition update

fτj (xn−1, rn,un) as before to corresponding post-state values ⟨ℓ′,x′⟩. Since a unique transition

τϕ(xn,n+1) is scheduled on every step this induces a deterministic PSTS Πϕ with piecewise system

update function Fϕ
T . We require that once the choice un is made, that all moments of distribution

Dn exist and are finite.

We refer to Πϕ as the induced PSTS and denote its sample executions as:

ρϕ(ω) ≜ ⟨ℓ0,x0⟩
τϕ(x0,1)−−−−−→ ⟨ℓ1,x1⟩

τϕ(x1,2)−−−−−→ · · ·
τϕ(xn−1,n)

−−−−−−→ ⟨ℓn,xn⟩ · · · .

A property P of the nondeterministic PSTS Π is said to hold almost surely if and only if P

holds almost surely for Πϕ, for all transition schedulers ϕ ∈ Φ.

Notice the post-distribution of Π under ϕ is again PostDistribϕ(s) = PostDistrib(s, τϕ).

Similarly, Definitions 4.2.2, 4.2.3, 4.2.4 can be lifted to pre-expectations of Π under ϕ by defining:

preE(e,Πϕ) =

n∑
i=1

1(φϕ
i (x,u)) · preE(e, τi)(x,u), for all x ∈ X
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where 1(φϕ
i ) = 1 if ϕ selects enabled transition i, and 0, otherwise. And define the operator

maxpreE = sup
ϕ

preE(e,Πϕ)

to be the the scheduler that selects that maximum pre-expectation among all possible schedulers.

Soundness of Proof Rules. We make the following observation: all certificate functions

V used in the soundness proofs are defined over the sample executions of the underlying PSTS.

Without loss of generality, fix a transition scheduler ϕ. Notice that in Definition 4.2.5 we imposed a

conservative requirement that a supermartingale expression map (and therefore, a supermartingale

ranking function) decreases in expectation across every transition τ over all states in which τ is

enabled (and not only those states that are reachable!). This means that convergence properties

of {Vn(ω) : V (ρϕn(ω))}∞n=0 hold over all possible choices ϕ can make (i.e., regardless of the specific

choices that scheduler ϕ makes). This means that our proof rules present sufficient conditions to

guarantee soundness under maxpreE and, therefore, under all possible transition schedulers ϕ ∈ Φ.

We conclude that a property P of the nondeterministic PSTS holds almost surely if there

exists a supermartingale ranking function certificate V satisfying the conditions of the correspond-

ing proof rule reach-add, reach-geom, persist-add, persist-geom, or rec with maxpreE

substituted in for preE.



Chapter 5

Synthesizing Linear and Polynomial Proof Certificates

In Chapter 4 we presented a deductive analysis approach that establishes sufficient conditions

to prove qualitative properties for a polynomial stochastic transition system. These conditions are

presented in the form of proof rules whose key aspect is identifying a suitable polynomial certificate

function that behaves as a ranking supermartingale over the runs of the PSTS.

In the previous chapter we provided the specific constraints that each certificate function

needs to satisfy in order for the corresponding proof rule to be sound. In this chapter we demonstrate

how two well-studied constraint-based approaches can be applied in the context of polynomial

stochastic transition systems to automatically generate polynomial certificates. The first approach

closely follows [46, 47, 147] and relies on solving systems of linear inequalities over the program

expressions of the PSTS. It produces linear certificate functions. The second follows [135, 6, 17] and

leverages efficient semidefinite programming techniques to solve classes of polynomial inequalities

and produce polynomial certificates.

Example 5.0.1 (The tortoise and the hare). Consider the program shown in Figure 5.1. It shows

a program that manipulates two real-valued variables h and t. Initially, the value of t is set to 30

and h to 0. The loop iterates as long as h ≤ t. Each loop iteration increments t by 1 while the value

for h may remain unchanged with probability 1
2 , or increase by a uniform random variable over the

interval [0, 10]. Does this program terminate almost surely? Using the techniques of Chapter 4 we

establish almost-sure termination using a supermartingale ranking expression t−h. It is initially

positive and whenever its value is non-positive, the loop termination condition is achieved. Finally,
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real h = 0; // h is hare

real t = 30; // t is tortoise

while (h <= t){

if flip (1/2) {

h = h + unifRand (0 ,10);

}

t = t + 1;

} // terminate a.s.?

ℓ3

ℓ9

h ≤ t

1
2

1
2

t′ = t+ 1
t′ = t+ 1
h′ = h+ r1

h >
t

h′ = h

t′ = t

id

Figure 5.1: (left) A simple probabilistic program inspired by the tortoise and the hare fable [5].
(right) The corresponding PSTS for the program on the left showing the two transitions and
self-loop id.

for each iteration of the loop, the value of this expression decreases in expectation by at least 1.5.

Therefore, by rule reach-add we guarantee this loop terminates almost surely.

In this chapter, we describe a procedure that automatically generates this expression. Fur-

thermore, we also derive the martingale expression 2.5t− h which will be of interest in Chapter 6.

5.1 Preliminaries

A linear constraint φ over X is an inequality of the form c1x1 + · · · cnxn + c0 ≥ 0 for some

coefficients c0, . . . , cn ∈ R and real-valued variables x1, . . . , xn. We write coefficients c1, . . . , cn in

vector form as c and denote with c̄ the vector c extended with c0. The linear inequality above

is then: φ(c̄,x) : cTx + c0 ≥ 0. A linear inequality φ(c̄,x) is called homogeneous if c0 = 0

and conic if each ci ≥ 0. An convex constraint is a conic constraint if in addition to each ci

being nonnegative,
∑n

i=0 ci = 1. A linear (convex) assertion Φ(X) over X is a conjunction∧k
i=1 φi(c̄i,x) of linear (convex) constraints over X.

A polyhedron P is the set of points satisfying a linear assertion. The set of all points that

satisfy a homogeneous convex assertion forms a convex (polyhedral) cone.



72

Theorem 5.1.1 (Farkas’ Lemma [65]). Let S be a system of linear inequalities over X of the form:

S :


a11x1 + · · · + a1nxn + b1 ≥ 0

...
...

...

am1x1 + · · · + amnxn + bm ≥ 0


for some m ∈ N.

Suppose S is satisfiable, then it entails a linear inequality

ψ(c,x) : c1x1 + · · ·+ cnxn + c0 ≥ 0

if and only if there exist multipliers λ0, λ1, . . . , λm ∈ R+ such that

c1 =

m∑
i=1

λiai1, · · · , cn =

m∑
i=1

λiain, c0 =

(
m∑
i=1

λibi

)
+ λ0.

Moreover, S is unsatisfiable if and only if ψfalse : 0 ≥ 1 can be derived as a conic combination of

the linear inequalities of S.

Farkas’ Lemma provides a complete method for solving a system S of linear inequalities, that

is, either there exist multipliers λ : λ0, . . . , λm with the desired properties to show ψ(c,x) ≥ 0, or

there exist multipliers λ̄ : λ̄0, . . . , λ̄m that can prove the unsatisfiability of S via ψfalse. An extension

to Farkas’ Lemma that also handles strict inequalities is referred to as Motzkin Transposition

Theorem [130] and both can be found in standard textbooks [41, 26].

Polynomials. Let R[X] denote the set of all multivariate polynomials on X. A polyno-

mial constraint over X is an inequality of the form p(x) ≥ 0 where p(x) ∈ R[X] is a non-negative

polynomial on x1, . . . , xn. A polynomial assertion φ(X) :
∧k

i=1 pi(x) ≥ 0 is a conjunction of

polynomial inequalities over X. The set of points satisfying a polynomial assertion

S(p̄) = {x ∈ X | p1(x) ≥ 0 ∧ . . . ∧ pk(x) ≥ 0}

is called a semi-algebraic set.

A polynomial p(x) is a sum-of-squares (SOS) polynomial iff it can be represented as

p = p21 + . . .+ p2k, for some k ∈ N,
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and some polynomials p1, . . . , pk over x.

While proving p is a nonnegative polynomial can be done by finding some SOS representation

of p, this can be expensive because it involves an search over all possible representative polynomials

p1, . . . , pk. To make the problem tractable, we often fix a basis of representative polynomials

g1(x), . . . , gk(x) and prove that a polynomial p is nonnegative over the semi-algebraic set

S(ḡ) ≜ {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.

Definition 5.1.1 (Putinar Representation). A polynomial p ∈ R[X] has a Putinar representa-

tion over S(ḡ) if and only if p = σ0 +
∑m

i=1 σi · gi, for σi sum of square polynomials.

We then leverage a result analogous to Farkas’ Lemma but over polynomial assertions called

Putinar’s Positivstellensatz [143].

Theorem 5.1.2 (Putinar’s Positivstellensatz). Let S(ḡ) ≜ {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} be

a compact semi-algebraic set. Let q be a polynomial of the form

q = λ0 +
m∑
i=1

λigi

for some SOS polynomials λ0, λ1, . . . , λm. If the semi-algebraic set {x | q(x) ≥ 0} is compact, then

every p(x) > 0 on S(ḡ) has a Putinar repreresentation:

p = σ0 +

m∑
i=1

σigi,

for SOS polynomials σ0, σ1, . . . , σm.

We refer to σ0, σ1, . . . , σm as the certificates that establish the non-negativity of p. The

search for certificates of p can be formulated as:

(∀x ∈ S)λ0 +
m∑
i=1

λigi ≥ 0 =⇒ σ0 +
m∑
i=1

σigi > 0.

This means that p(x) > 0, for all x ∈ T , if

(∀x ∈ S(ḡ)) (σ0 − λ0) +

m∑
i=1

σigi −
m∑
i=1

λigi ≥ 0.
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This leads to the following sufficient condition p− q ∈ SOS:

(∀x ∈ S(ḡ)) σ̄0 +
m∑
i=1

(σ̄i)gi ≥ 0.

where we require that all σ̄i = σi − λi ∈ SOS. In practice, we fix a degree d ∈ N and consider all

SOS σ̄i up to degree d. We refer to this as the truncated quadratic module of degree d and use

it in Section 5.3 to encode constraints.

Finally, given a PSTS Π, a polyhedral (polynomial) invariant I of Π maps every location

ℓ to a linear (polynomial) assertion that overapproximates the set of states ⟨ℓ,x⟩ reachable from

⟨ℓ0,x0⟩. A common technique to obtain polynomial invariants is to use standard (non-probabilistic)

abstract interpretation [51].

5.2 Linear Supermartingale Certificate Generation

Our goal is to automatically discover supermartingale expression maps and super martin-

gale ranking functions (SMRF). Our approach builds upon previous work by Colón et al. and

Sankaranarayanan et al. for constraint-based invariant and ranking function discovery for standard

(non-probabilistic) non-deterministic transition systems [46, 47, 147]. We restrict our approach to

affine PSTS which restrict the guard φ of any transition τ : (ℓ, φ, fτ ), to be polyhedral (i.e., a

linear assertion over X), and update function fτ to be a piece-wise affine function:

for each fork (mi, gi) of fτ , gi(x, r) : Aix+Bir+ ai, (5.1)

for some real n× n matrices Ai, n×m matrices Bi, and real vectors ai.

A template expression is a bilinear form c0 +
∑n

i=1 cixi with unknowns c0, . . . , cn. We

may also consider a template expression map η that maps each location ℓj to a template expression

η(ℓj) : cj0 +
∑n

i=1 cjixi. We collectively represent the unknown coefficients as a vector c. We

encode the conditions for a template expression (map) corresponding to our objective: martingales,

supermartingales or supermartingale ranking functions. Solving the resulting constraints directly

yields (super) martingales.
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Example 5.2.1. Consider the PSTS in example 5.0.1 (see Figure 4.2). We wish to discover a

supermartingale expression using the template c1h+ c2t+ c0 at locations ℓ3, ℓ9.

Encoding Supermartingales. In this section section we discuss how the conditions on

the pre-expectations of a linear supermartingale expression (map) can be encoded in a system

of linear inequalities using Farkas Lemma. Let τ : (ℓ, φ, fτ ) be a transition with k forks fτ :

(m1, g1(x, r)), . . . , (mk, gk(x, r)). Let η be a template expression map. We wish to enforce that η

is a supermartingale (see Definitions 4.2.1):

(∀ x ∈ X) (φ[x]) =⇒ preE(η, τ) ≤ η(ℓ)[x].

That is,

(∀ x ∈ X) (φ[x]) =⇒
k∑

i=1

pi · ER [ηℓ(gi(x, r))] ≤ η(ℓ)[x]. (5.2)

Recall that in (5.1) we require each fork update gi(x, r) to be an affine function. Each

η(mi, gi(x, r)) can thus be expressed as η(mi, gi(x, r)) = cTAix+ cTBir+ cTai.

Example 5.2.2. Returning back to Example 5.2.1, we wish to encode pre-expectation condition for

the transition τ : (ℓ3, (h ≤ t), f1, f2), where f1 : (ℓ3, h
′ 7→ h, t′ 7→ t+ 1) with probability p1 : 1

2 , and

f2 : (ℓ3, h
′ 7→ h+ r1, t

′ 7→ t+1), with probability 1
2 . We encode the pre-expectation condition for τ :

(∀h, t) (h ≤ t) =⇒

 1
2Er1(c1h+ c2(t+ 1) + c0)+

1
2Er1(c1(h+ r1) + c2(t+ 1) + c0)

 ≤ c1h+ c2t+ c0 .

We note that Er1(r1) = 5 (See Figure 5.1). By linearity of expectation, we obtain

(∀h, t) (h ≤ t) =⇒ c1h+ c2t+ c2 +
1

2
c1Er1(r1) ≤ c1h+ c2t .

Simplifying, we obtain (∀h, t) (h ≤ t) =⇒ c2 +
5
2c1 ≤ 0. Here, the RHS is independent of the

variables h, t. Moreover, any constant term c0 is preserved by the preE operator and cancels out.

Therefore, we obtain c2 +
5
2c1 ≤ 0.

Let µ represent the vector of mean values where µj = ER(rj). Therefore,

ER

[
ηmj (gj(x, r))

]
= cTAx+ cTBµ+ cTa . (5.3)
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To encode the supermartingale property for transition τ , we use Farkas Lemma to encode the

implication

(∀ x) (φ[x]) =⇒ preE(η, τ)︸ ︷︷ ︸
template expression

≤ η(ℓ)[x]︸ ︷︷ ︸
template expression

(5.4)

Let φ be satisfiable and represented in the constraint form as Ax ≤ b. Below is a suitable refor-

mulation of the Farkas Lemma.

Theorem 5.2.1 (Farkas Lemma). The linear constraint Ax ≤ b =⇒ cTx ≤ d is valid if and only

if its alternative is satisfiable ATλ = c ∧ bTλ ≥ d ∧ λ ≥ 0.

Encoding the entailment in Equation (5.4) using Farkas Lemma ensures that the resulting

constraints are linear inequalities.

Example 5.2.3. Continuing with Example 5.2.2, the transition id yields the constraint true. There-

fore, the only constraint is c2 +
5
2c1 ≤ 0. Solving, we obtain the line (c1 : 1, c2 : −5

2 ), yielding the

martingale 2h− 5t, while the ray (c1 : −1, c2 : 0) yields the supermartingale expression −h. Other

supermartingales such as t− h can obtained as linear combinations.

Finding Additive Supermartingale Ranking Functions. The process of discovering

SMRFs is similar, but requires extra constraints to reflect the additional conditions SMRFs satisfy.

An abstract interpretation pass can be used to yield helpful invariants by treating the random

variables and forks as nondeterministic choices. Given an affine PSTS Π, a polyhedral invariant

I(ℓ) of Π and a target set T ⊆ S we encode a SMRF as follows:

(1) To encode the non-negativity, we use the invariants at each location ℓ ̸= ℓT , I(ℓ) |= η(ℓ) ≥ ε.

For location ℓT , we encode I(ℓT ) |= 0 ≤ η(ℓT ) < ε. The latter condition requires the

Motzkin transposition theorem, a generalization of Farkas lemma that deals with strict

inequalities [105]. Here ε is treated as an unknown constant, whose value is also inferred

as part of the process.

(2) The drift (or adequate decrease) condition is almost identical to that for supermartingales.
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However, we introduce an unknown c > 0 and require that for each transition τ : ⟨ℓτ , φτ , fτ ⟩:

I(ℓτ ) ∧ φτ |= preE(η, τ) ≤ η(ℓ)− c.

Example 5.2.4. Revisiting Example 5.2.2, we perform an abstract interpretation to obtain the

facts I(ℓ3) : 0 ≤ h ≤ t + 9 ∧ h ≤ 9t − 270 ∧ t ≥ 30 and I(ℓ9) : h > t ∧ h ≤ t + 9. We

use the template η(ℓ3) : c3,1h + c3,2t + d3 and η(ℓ9) : c9,1h + c9,2t + d9. We obtain the result

c3,1 = c9,1 = −1, c3,2 = c9,2 = 1 and d3 = 10, d9 = 0, with c = 3
2 and ε = 9. This yields the SMRF

η(ℓ3) : t − h + 18, η(ℓ9) : t − h + 9. When the value of η drops below ε = 9 the PSTS is in the

target location ℓ9.

Note 3. Notice that preE operator preserves positive multiplicative factors and additive terms: if

η(ℓ) = cT
ℓ x is a template expression then according to Equations 5.2, 5.3:

preE(η, τ) =
k∑

i=1

pi · [cT
ℓAix+ cT

ℓBiµ+ cT
ℓ ai] = cT ·

k∑
i=1

pi · [Aix+Biµ+ ai],

and so for any real λ > 0,

preE(λ · η, τ)− λη(ℓ) = λ(preE(η, τ)− η(ℓ)).

This means that scaling each program expression by some multiple λc scales the linear constraints

so that the adequate decrease equals 1 (c = 1). In Example 5.2.4 we could take λc = 2
3 and

η(ℓ3) =
2
3t−

2
3h+ 12, η(ℓ9) =

2
3t−

2
3h+ 6 to obtain an SMRF with ε = 6. Alternatively, we could

scale η by λK = 1
K = 1

9 to guarantee a bound ε = 1, where

K ≜ max
⟨ℓ′,x′⟩

|η(ℓ′,x′)− η(ℓ,x)|

is the maximum possible increase of η over the post-states of the system.

Finding Multiplicative Supermartingale Ranking Functions. Let us consider the

supermartingale drift condition

preE(η, τ) ≤ η(ℓ) ⇐⇒ preE(η, τ)− η(ℓ) ≤ 0
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and α-multiplicative drift condition

preE(η, τ)− αη(ℓ) ≤ 0, for some α ∈ (0, 1).

The latter one we can write as

cT ·
k∑

i=1

pi (Biµ+ ai) ≤ cT

(
αI −

k∑
i=1

piAi

)
x.

Unfortunately, in general the drift condition presents a bilinear constraint: we need to find an

α ∈ (0, 1) and a vector of coefficients c whose product αcTx appears in a constraint. This may

require a policy iteration scheme whereby we first find a vector c such that for some α (say, initially

α = 1) the constraint holds then attempt to minimize α until a vector of coefficients c and α ∈ (0, 1)

that satisfies all constraints is found.

Affine PSTS and linear certificates. One may think that the class of affine PSTS is

simple (given the polynomial dynamics we presented in Chapter 4) and that in general linear SMRF

certificates may be sufficient to establish the almost sure reachability and repeated reachability

properties.

Unfortunately, unlike standard ranking functions, we do not obtain completeness. Consider

a purely symmetric random walk:

int x := 10;

while (x >= 0) {

if flip (0.5)

x++;

else

x--;

}

Using recurrence properties of symmetric random walks, one can show that the program

above terminates almost surely. Yet, no linear SMRF can found since x is martingale and does not

show adequate decrease. In fact the expected time to termination is infinite, i.e., for the stopping

time T : {x = 0}, ET = ∞. If the flip probability is changed to 0.5 − δ, for any δ ∈ (0, 0.5), then

the expression x becomes a δ-additive SMRF for the program above.
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5.3 Polynomial Supermartingale Certificate Generation

Given a polynomial stochastic system Π, a polynomial invariant I(ℓ) of Π and a semi-algebraic

target set T ⊆ S, the problem of finding polynomial certificates V that prove reachability, persis-

tence or recurrence properties is, in general, intractable. For instance, proving strong persistence is

equivalent to solving a polynomial optimization problem that under arbitrary number of variables

X and degrees of polynomials constraints is known to be NP-hard.

In order to address the complexity of the problem, we follow the lead of many of success-

ful research techniques and impose several restrictions on the proof rules so that finding solutions

become more tractable. One of the most influential approaches to generating non-negative polyno-

mials under constraints is to reduce the problem to sum-of-squares (SOS) optimization for which

efficient techniques exist (see e.g. [6, 17] and the references therein). To illustrate, we consider

spersist-geom and persist-geom; the formulations for the other proof rules are analogous.

Certificates for Persistence. Recall that for proving strong persistence properties via the

geometric rule spersist-geom, we need to find a function V such that

(p1) (∀ s ∈ S) V (s) ≥ 0 Positive definite V.

(p6) (∃α ∈ (0, 1)) (∀ s ∈ S) DV (s) ≤ −αV (s) Drift condition.

We impose the following restrictions to make the feasibility problem tractable.

Restriction 1: We require that V is a polynomial template of a fixed maximal degree dV :

V (c,x) =

m∑
i=1

cimi(x),

where ci ∈ R denote unknown coefficients and mi(x) denote some fixed set of monomials with

maximum degree dV . Let dfτ denote the degree of the polynomial update function in each transition

τ of Π and let df = maxτ∈T dfτ . This means that DV is also a polynomial template with degree

dV df . Moreover, as we saw in Section 5.2, DV can be expressed in terms of the unknown coefficients

of V and the moments µ of the random variable rc.

Example 5.3.1. Consider the PSTS of Example 4.4.6 and fix a degree-2 monomial basis m̄ =

{m1 : x2, m2 : xy, m3 : y2}. The degree-2 polynomial template expression V over the monomial
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basis m̄ is

V (c,x) = c0x
2 + c1xy+ c2y

2.

The pre-expectation preE(V, f), and therefore, DV is a degree dV df = 2 · 2 template over the

monomials {m1 : x
2,m2 : xy,m3 : y

2,m4 : x
2y,m5 : xy

2,m6 : x
2y2}.

Restriction 2: We replace the nonnegativity constraints by the more restrictive sum-of-

squares (SOS) constraints, i.e., we require that both V and −DV be sums of squares of some

unknown polynomial functions. We also require that V is positive definite, which is a common

regularity condition assumed in semidefinite optimization and allows us to find an α ∈ (0, 1) such

that the condition (p6) in spersist-geom holds.

(p1) V ∈ SOS, V (·,x) > 0, for x ̸= 0 Positive definite SOS V

(p6) −DV ∈ SOS SOS drift condition.

Under these two restrictions, the generally intractable feasibility problem from spersist-

geom is equivalent to a linear semidefinite feasibility problem: a polynomial being a sum of squares

(of polynomial functions) is equivalent to its vector of coefficients being the image of an unknown

positive semidefinite matrix under a predetermined linear transformation. (For more details on SOS

relaxation techniques for solving polynomial feasibility/optimization problems, see e.g. [6, 17].)

For proving persistence properties with respect to a nonempty set T via the geometric rule

persist-geom, we need to find a function V such that conditions (p1)-(p3),(p5) hold.

(p1) (∀ s ∈ S) V (s) ≥ 0, Positive semidefinite V.

(p2) (∃ ε > 0) (∀ s ∈ S \ T ) V (s) ≥ ε, Lower bound outside T.

(p3) (∃ α ∈ (0, 1)) (∀ s ∈ S \ T ) DV (s) ≤ −αV (s), Drift condition outside T.

(p5) (∀ s ∈ T ) DV (s) ≤ 0, Drift condition inside T.

We require that V is a polynomial of degree at most d and that T = {x | g1(x) ≥ 0∧· · ·∧gℓ(x) ≥ 0}

for some polynomials g1, . . . , gℓ. Then we replace those constraints pertaining to the elements in

T , by truncated quadratic module membership. For instance, we replace the condition (p5) by
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the tractable constraint:

DV = σ0 + σ1g1 + · · ·+ σℓgℓ, σ0, σ1, . . . , σℓ SOS of degree at most d̃, for some d ∈ N.

The tractability of such a constraint is due to the fact that the polynomials σi being SOS can be

phrased as semidefinite feasibility constraints. Similar treatment can be applied on those constraints

pertaining to the elements in X \ T , which is also a semialgebraic set. Finally, constraints (p3),

(p5) are encoded as polynomial (SOS) constraints via Putinar’s Positivstellensatz.

5.4 Synthesis Results

In this section we present the results of two implementations: one for affine PSTS that produce

linear supermartingale and supermartingale certificate functions with focus on proving reachability

properties, and a second one, for polynomial stochastic systems and polynomial supermartingale

certificates for proving persistence and recurrence properties.

5.4.1 Linear Certificates

We implemented the ideas of Section 5.2 in a constraint generation framework that reads in

the description of a PSTS and generates constraints for supermartingale expression maps. The tool

uses the Parma Polyhedra Library [9] to generate all possible solutions to these constraints in terms

of martingale and supermartingale expressions. In Chapter 7 we present an abstract interpretation

based approach that can also automatically infer invariants using a numerical polyhedral abstract

domain.

Example 5.4.1 (Robot Dead Reckoning). Dead reckoning is an approach for position estimation

starting from a known fix at some time t = 0. Figure 5.2 (left) shows a model for robot navi-

gation that involves estimating the actual position (x, y) of the robot as it is commanded to make

various moves. Each step involves a choice of direction chosen from the set of compass directions

{N,W,E, S,NE,NW,SW,SE} each with probability 0.1 or a “Stay” command with probability 0.2.

The variables dxc, dyc capture the commanded direction, whereas the actual directions are slightly



82
real x,y, estX , estY := 0,0,0,0

real dx , dy , dxc , dyc := 0,0,0,0

int i, N := 0,500

for i = 0 to N {

cmd := choice(N:0.1,S:0.1,

E:0.1,W:0.1,NE:0.1,SE:0.1,

NW:0.1,SW:0.1, Stay :0.2)

switch (cmd) {

N: dxc ,dyc := 0, rand (1,2)

S: dxc , dyc := 0, -rand (1,2)

Stay: dxc ,dyc := 0,0

E: dxc ,dyc := rand(1,2), 0

...

}

dx:= dxc+rand ( -.05 ,.05)

dy:= dyc+rand ( -.05 ,.05)

x := x + dx

y := y + dy

estX := estX + dxc

estY := estY + dyc }

int i := 0;

real money := 10, bet

while (money >= 10 ) {

bet := rand (5 ,10)

money := money - bet

if (flip (36/37)) // bank lost

if flip (1/3) // col. 1

if flip (1/2)

money := money + 1.6* bet // Red

else money := money + 1.2* bet // Black

elseif flip (1/2) // col. 2

if flip (1/3)

money := money + 1.6* bet; // Red

else money := money + 1.2* bet // Black

else // col. 3

if flip (2/3)

money := money + 0.4* bet // Red

i := i + 1 }

Figure 5.2: (left) Probabilistic program model for dead reckoning and (right) Modeling a betting
strategy for Roulette.

off by a random value. Our goal is to estimate how the position x, y deviates from the actual po-

sition estX, estY. Our analysis shows that expressions x − estX and y − estY are martingales at

the loop head and, therefore, stay close together. We provide a quantitative result to this problem

in Chapter 6.

Example 5.4.2 (Roulette). For our next example, we analyze a betting strategy for a game of

Roulette. The game involves betting money on a color (red or black) and a column (1,2 or 3). At

each step, the player chooses an amount to bet randomly between 5 and 10 dollars. We skip a detailed

description of the betting strategy and simply model the effect of the strategy as a probabilistic

program, as shown in Figure 5.2 (right). The model captures the various outcome combinations

({Bank} ⊎ {Red,Black}×{1, 2, 3}), including the one where the bank wins outright with probability

1
37 . Our analysis discovers the martingale expression 15 × i − 74 × money which can be used to

bound the probability of the money exceeding a certain quantity after n rounds. We generate the

SMRF: −money. Thus, the program terminates almost surely in the gambler’s ruin.

Table 5.1 shows a summary of the evaluation of our approach over a set of 11 linear PSTS

benchmarks. A description of the remaining benchmarks as well as the inferred properties are
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ID Description |X| |R| |L| |T | #M #S

Roulette betting strategy for roulette 3 1 1 1 1 1
Track Target tracking with feedback 3 5 3 9 1 3
2dWalk Random walk on R2 4 1 1 4 3 1
coupon5 coupon collectors with n = 5 coupons 2 0 5 4 4 8
fairBiasCoin simulating a fair coin by biased coin 3 0 2 3 0 2
queue queue with random arrivals/service 3 0 1 2 1 2
cart steering a cart on a rough surface 5 4 6 12 2 4
invPend discr. inverted pendulum stoch. disturb. 5 6 3 3 0 0
pack packing variable weight objects in cartons 6 2 3 5 3 4
convoy2 leader following over a convoy of cars 6 1 2 4 1 0
dreckon dead reckoning model 10 4 3 3 4 1

Table 5.1: Results on a set of benchmark programs. #M is the number of non-trivial martingales
discovered and # S is the number of non-trivial supermartingales. All timings are under 0.1 seconds
on Macbook Air laptop with 8 GB RAM, running Mac OS X 10.8.3.

provided in Appendix A.1.

5.4.2 Polynomial Certificates

There are many standard semidefinite optimization solvers (see e.g., Mittelmann [125]) and

SOS optimization front-ends (such as SOSTOOLS [3], Yalmip [115], and others) available for solving

the SOS optimization problems outlined in Section 5.3. We present some simple examples on

the use of spersit-geom rules for proving persistence. In each example, an α-multiplicative

supermartingale expression is obtained using SDPT3-4.0 [153] on MATLAB R2014b, taking less

than 10 seconds on a Linux machine with Intel(R) Core(TM) i7-4650U CPU @ 1.70GHz.

Example 5.4.3. (Rimless wheel model [29, 120, 151]) A rimless wheel with 8 equally spaced inelas-

tic spokes of length L rolls down a hill with stochastic slope angle γ. Let ωn be the angular velocity

at the n-th impact (which occurs when the stance leg is vertical). In [29, 151], the dynamics of the

rimless wheel is described as:

xn+1 := cos2 θ
(
xn + 2g

L

(
1− cos

(
θ
2 + γ

)))
− 2g

L

(
1− cos

(
θ
2 − γ

))
,

where xn = ω2
n, g is the gravitational constant, θ = 45◦ is the angle between two consecutive spokes

and γ ∼ N (8, 1) (in degrees). We approximate the functions ξ 7→ cos( θ2 ±ξ) over the interval [5, 11]
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by degree 2 polynomials, and find that the angular velocity in the approximated stochastic system

goes to 0 almost surely when L = 2g.

Notice that the certificate function V (x) = 0.00085x3+x4 satisfies conditions (p1), (p6) with

X : [0,∞) and α = 0.95: V and −DV are nonnegative on X and DV (x) ≤ −0.05V (x) for all

x ≥ 0. Hence, V is a α-multiplicative supermartingale for this system over X, and ♢□(V (x) ≤ ε)

holds a.s. for any ε > 0. In other words, despite the randomness in the slope of the terrain, the

rolling rimless wheel (with very long spokes) would eventually become stationary almost surely.

Example 5.4.4. (Room temperature control [4]) In the two-room temperature control example

from Section 4.4, we are interested in the evolution of the room temperatures within the range

X = [6, 33]2. Consider the nonnegative function V (x1, x2) : (x1 − 18.3)2 + (x2 − 18.8)2. When the

noise follows the uniform distribution U(−0.01, 0.01), DV is nonpositive on X, and V (x1, x2) ≥ 0.09

and DV (x1, x2) ≤ −0.01V (x1, x2) for all x ∈ X \ [17.8, 18.7]× [18.4, 19.3]. Hence conditions (p1)-

(p4) hold, implying the persistence property ♢□(17.8 ≤ x1 ≤ 18.7 ∧ 18.4 ≤ x2 ≤ 19.3).

In the case of Gaussian noise N (0, 0.25), DV (x1, x2) ≤ 0.25 for all (x1, x2) ∈ [16.9, 19.6] ×

[17.3, 20.2], and V (x1, x2) ≥ 0.8 and DV (x1, x2) ≤ −6 × 10-5 for all (x1, x2) ∈ X \ [16.9, 19.6] ×

[17.3, 20.2].

Hence conditions (r1)-(r4) hold, implying the almost sure recurrence property □♢(16.9 ≤

x1 ≤ 19.6 ∧ 17.3 ≤ x2 ≤ 20.2).

We list some additional examples in which one of the systems found in Appendix A.2 is

proved to satisfying a persistence or recurrence property via the proof rules from Section 4.4. The

details of these examples and the properties we establish are found in the Appendix.
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Stochastic Systems Noise uj (i.i.d.) Supermartingale V (x, y)

x′ := x+ 1
2
y + u1,

y′ := 1
2
x+ y − u2

N (−1, 1) max(x− y, 0)

(over X = R2) (for proving recurrence)

x′ := 0.5(x+ y) + 0.4u1

√
x2 + y2,

y′ := 0.5(x− y) + 0.4u2

√
x2 + y2,

N (0, 1) x2 + y2

(over X = R2) (0.82-multi.)

x′ := 0.75y4 + 0.1u1,
y′ := 0.75x4 + 0.1u2,

U(−1, 1) 0.78x2 + 1.23xy + 0.78y2

(over X = {(x, y) |x2 + y2 ≤ 1}) (0.75-multi.)

x′ := 0.1(y(3x2 + 2y2 − 0.5) + u1

√
x2 + y2),

y′ := 0.1(y(2x2 + 4xy + 3y2 − 0.5) + u2

√
x2 + y2),

U(−
√
3,
√
3) 1.55x2 + 2.36xy + 1.34y2

(over X = {(x, y) |x2 + y2 ≤ 1}) (0.5-multi.)

Table 5.2: The results of our implementation on the PSTS in Section A.2. Stochastic Systems
summarizes the update dynamics of each system. Noise presents the type of stochastic noise:
N (µ, σ) - Gaussian noise with mean µ and standard deviation σ, U(a, b) - Uniform noise over the
interval [a, b]. Supermartingale presents the inferred certificate V (x).



Chapter 6

Quantitative Analysis

In Chapter 4 we presented a set of deductive proof rules for establishing qualitative (a.s.)

reachability and repeated reachability properties. The soundness of the rules as well as their ap-

plication requires finding suitable supermartingale ranking functions. In Chapter 5 we proposed

two constraint-based generation techniques to automatically find supermartingale certificate func-

tions. Chapter 7 present another automated technique based on abstract interpretation to generate

a set of mutually inductive supermartingale expressions. The focus of the current chapter is the

quantitative analysis of stochastic properties that martingales and supermartingales enable.

6.1 Concentration of Measure

Concentration of measure (COM) is a phenomenon in probability theory stating that un-

der suitable conditions given a random variable X whose expected value EX exists, most of the

probability measure µX of X is concentrated within a narrow range around EX.

To best illustrate the phenomenon consider the simple example below.

Example 6.1.1 (CLT). Figure 6.1 presents a simple probabilistic program that aggregates the sum

of 500 independent samples drawn from a real uniform distribution over the range [0, 1]. For this

program a standard non-probabilistic static analysis [51, 123] may infer the following loop invariant:

0 ≤ x ≤ 501 ∧ i = N at line ℓ3 at the time when the loop is exited. This invariant (shaded pink

in Figure 6.1(right)) accurately captures the set of all possible reachable states of the program.

However, the value of x is clearly tightly clustered around E(x) = 250. In fact, in none of the 500
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1 real x = 0;

2 real N = 500;

3 for (i=0; i < N; ++i){

4 x = x + unifRand (0 ,1);

5 }

6 // Prob(x \in [200 ,300])?

Figure 6.1: (left) A simple probabilistic program that accumulates 500 iid uniform random draws
on [0, 1]; (right) A graph of 10000 sample executions of the sum X versus the number of draws
i of the probabilistic program (in blue); a standard non-probabilistic loop invariant for the same
program (in pink).

simulations is the final value of x ̸∈ [200, 300]. Using the approach we describe in this chapter, we

can guarantee P (x ∈ [200, 300]) ≥ 0.84.

An alternative perspective on Concentration of measure (COM) is that it provides bounds

on the confidence of a prediction. In the context of Example 6.1.1, suppose one wants to make a

guess about the value of x upon termination. Presented with the evidence in Figure 6.1, one may

reasonably choose the expected value µx = Ex of the random quantity (in fact, this is the most

likely outcome), or, to maximize the chance of their success, predict a value very close to µx, say,

[µx − 50, µx + 50].

One may then want to establish some guarantees on the quality of the prediction: for example,

with confidence δ ∈ (0, 1) the predicted value is within n = 50 units around the expected value.

That is, were the experiment repeated a large number of times, the prediction would be correct

in δ fraction of the experiments. This means that the probability of deviating more than n units

away from the expected value (our prediction) is upper-bounded by δ. In this sense COM provides

a formal framework for relating the size of deviations and the level sets of possible probability

distributions.

Concentration of Measure (COM) Inequalities. Concentration of measure is a well-
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studied phenomenon [112, 39, 60, 21, 13] with a wealth of results that under suitable conditions

provide an upper bound on the probability of deviations from the expected value of a random

quantity. Most results are in the form of inequalities such as

P (X − EX ≥ t) ≤ K(t), for a random variable X; or,

P (Xn −X0 ≥ t) ≤ K(t), for a stochastic process {Xn}∞n=0,

where the probability bound K often decreases exponentially in t. The bound K also depends on

the properties of the random variable including the existence of its finite moments.

Below are two of the earliest and well-known concentration of measure inequalities.

• (Markov Inequality) Let X be a nonnegative random variable, then

P (X ≥ a) ≤ E(X)

a
, for any a > 0.

• (Chebyshev Inequality) Let X be a random variable, then for any k > 0,

P (|X − E(X)| ≥ k · σX) ≤
σ2X
k2
,

where σ2X ≜ E[(X−E(X))2] is the variance ofX, and σX ≜
√
σ2x is the standard deviation.

• (Chebyshev Higher-Moments) Chebyshev’s Inequality above has been extended to higher

moments as well. Let X be a random variable, then for any k > 0, n ≥ 2,

P
(
|X − E(X)| ≥ k(mn)

1
n

)
≤ 1

kn
,

where mn ≜ E(|X − E(X)|n) is the n-th central moment of X.

The following example motivates our interest into COM for reachability properties.

Example 6.1.2. Consider the empirical result of our motivating example from Chapter 4 repro-

duced for ease of reference in Figure 6.2. The histogram on the (right) presents 106 simulations

of the probabilistic program in Figure 6.2 (left). The mean value for count is E( ˆcount) = 5.38218

and its maximum value is 21. Although count spans a wide range [1, 21], empirical estimates show
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1 int x = unifRand (-5,3);

2 int y = unifRand (-3,5);

3 int count = 0;

4 while (x + y <= 10) {

5 if flip (3/4){ //r_flip

6 x = x + unifRand (0 ,2);

7 y = y + 2;

8 }

9 count ++;

10 }

11 //loop termination

Figure 6.2: (Left) An example of a simple probabilistic program; (Right) Histogram of the value
of count for 106 simulations of the program.

that P(count ≥ 13) = 0.004595. In fact, using statistical inference we can conclude that at the 99%

confidence level the same probability lies in the interval 0.008379±2.3×10−4. This means that over

0.99 of the probability measure associated with count at the end of the program is concentrated in

the range [1, 12].

Applying Markov’s Inequality we can prove that

P(|count− E( ˆcount)| ≥ 6.6181) ≤ E( ˆcount)

6.6181
= 0.8132.

This example presents an apparent disconnect between the strength of what is provable using

concentration of measure inequalities and statistical results obtained in practice. Approaches that

rely on providing statistical guarantees have gained much popularity because of their ease of use and

the fact that they have precise dynamic (runtime) information available: all moments m0,m1, . . .

of the distributions are known (or at least their empirical estimates: m̂0, m̂1, . . .).

The imprecision of COM inequalities is due to the fact they were developed to be highly ap-

plicable and usually rely only on the first two moments as available information (in Example 6.1.2,

E( ˆcount) only). Had variance information (m̂2 : σ
2 = 5.03697) been available Chebyshev’s inequal-

ity can be used to prove a stronger result:

P(|count− E( ˆcount)| ≥ 6.6182) ≤ σ2

(6.6182)2
= 0.119.

While information about the expected value of program variables may be easy to compute statically,
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variance information may not be.

6.2 Martingales and COM: Azuma-Hoeffding Inequalities

Fortunately, strong COM results have been proved for large deviations of martingales.

Theorem 6.2.1 (Hoeffding Inequality [60]). Let X be a bounded martingale such that ai ≤

Xi −Xi−1 ≤ bi, for all i ≥ 0. Then,

Pr(Xn > X0 + t), P r(Xn < X0 − t) ≤ exp

(
− t2

2
∑n

i=1(bi − ai)2

)
.

Theorem 6.2.2 (Azuma Inequality [60]). Let X be a bounded martingale such that −ci ≤ Xi −

Xi−1 ≤ ci, for all i ≥ 0. Then,

Pr(Xn > X0 + t), P r(Xn < X0 − t) ≤ exp

(
− t2

2
∑n

i=1 c
2
i

)
.

Notice that if we let ci = max(|ai|, |bi|) then −ci ≤ ai ≤ bi ≤ ci. This means that in the

asymmetric case when ai ̸= −bi, the Hoeffding bounds could always be “relaxed” to the Azuma

bounds and that they are strictly better otherwise. This is why these inequalities often go together

under the name Azuma-Hoeffding inequality.

Example 6.2.1. Returning to the example above, we are interested in the probability of a large

deviation of count such as P(count ≥ 21) over the runs of length up to 21.1 Facts at our disposal

are 4x+ 4y− 9count is a martingale expression and so is M [x] : x+ y− 2.25count. For the

martingale {Mn}∞n=0 induced over the runs of the program we know M0 ≥ −8 and that along any

iteration i of the loop, a ≤Mi−Mi−1 ≤ b with a = −2.25, b = 1.75. We are interested in probability

of a deviation of count P(countn ≥ 21) for n = 21. This implies that at iteration n, x + y ≤ 10

still holds.

We outline below how the probability of the tail event P (countn ≥ 21) can be upper bounded

1 Technically, this analysis is performed over the stopped version of the stochastic process M that freezes the
value of count whenever x+ y > 10 is satisfied for the first time.
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by the deviation of a martingale using the Azuma-Hoeffding inequalities:

countn ≥ 21 ⇐⇒ −2.25 · countn ≤ −47.25, (arithmetic)

xn + yn − 2.25 · countn ≤ xn + yn − 47.25, (arithmetic)

Mn ≤ 10− 47.25, (using x+ y ≤ 10)

Mn −M0 ≤ 8− 37.25 = −29.25.

This means that if we let t = 29.25, n = 21, and ci = −ai for all i ≥ 0,

P(Mn ≤M0 − t) ≤ exp

(
− t2

2
∑n

i=1 c
2
i

)
is equivalent to

P(countn ≥ 21) ≤ exp

(
−
(10 +M0 − 9

4count)
2

2(n)(ci)2

)
= exp

(
− 29.252

2(21)(2.25)2

)
= 0.01788.

6.2.1 Square Integrable Martingales*

In this section we present some recent results from Bercu et al. [13] that strengthen Azuma-

Hoeffding type inequalities by requiring a finite second moment. For the purposes of this section

only, we assume that the second moment of any martingale expressions e exist and are finite

E[e2n] <∞. We defer discussion on how to establish until after the results.

Definition 6.2.1. A martingale {Mn}∞n=0 is square integrable if for all n ≥ 0, E[M2
n] <∞. The

increasing process of {Mn} is defined by ⟨M⟩0 = 0 and for all n ≥ 1,

⟨M⟩n ≜
n∑

k=1

E[(Mk −Mk−1)
2|Fk−1]

and we let ∆Mk =Mk −Mk−1 and the variance process

Vk = ⟨M⟩k − ⟨M⟩k−1 = E[(Mn −Mn−1)
2 | Fn−1].

Theorem 6.2.3 (Theorem [13, 3.1]). Let {Mn} be a square integrable martingale with Mk −

Mk−1 ≤ Bk and let {Vn} be the corresponding variance process. For any positive t,

P (Mn ≥ t) ≤ exp

(
− t2

∥An∥∞

)
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where

An ≜
n∑

k=1

Bk
2Φ

(
Vk
B2

k

)
and Φ(v) =


1−v2

| log(v)| if v < 1,

2v if v ≥ 1.

Theorem 6.2.4 (Theorem [13, 3.4]). Let {Mn} be a square integrable martingale with |Mk −

Mk−1| ≤ Bk a.s. and let ⟨M⟩n be the corresponding increasing process. For any positive t,

P (Mn ≥ t) ≤ exp

(
− 3t2

∥5⟨M⟩n + Bn∥∞

)
≤ exp

(
− t2

2∥Bn∥∞

)
where

Bn ≜
n∑

k=1

Bk
2.

Notice that the last term above represents the Azuma-Hoeffding inequality and, therefore,

presents an improvement over Theorem 6.2.2 in the case when Mn is bounded symmetrically.

Theorem 6.2.5 (Theorem [13, 3.6]). Let {Mn} be a square integrable martingale with Ak ≤

Mk −Mk−1 ≤ Bk, for all k ≥ 0, for some negative random variables Ak and nonnegative random

variables Bk. Let ⟨M⟩n be the corresponding increasing process. For any positive t,

P (Mn ≥ t) ≤ exp

(
− 3t2

∥2⟨M⟩n + Dn∥∞

)
where

Dn ≜
n∑

k=1

(Bk −Ak)
2.

The result in Theorem 6.2.5 is shown to be an improvement over the Hoeffding bound.

Remark 2. For a martingale expressionMn[X], it may be highly non-trivial to (statically) establish

whether E[M2
n] < ∞ holds. In Section 6.2.1 we assumed that moments of martingale expressions

exist and are finite to demonstrate and underscore the strength of the applicable COM results. In

practice most examples of stochastic processes in the literature with E[Mn] < ∞ but E[M2
n] = ∞

rely on: (i) stochastic dynamics that perform unbounded jumps; (ii) carefully crafted probability

distributions on every step that depend on the current state of the system. To alleviate (i), one

may consider expressions that satisfy the bounded increase, or general compactness, properties.
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Figure 6.3: (top) A histogram of the probability of P (count = n) at the end of execution and
a comparison of the probability bounds: Markov - Markov Inequality; Chebyshev - Chebyshev
Inequality; Chebyshev-5 - Chebyshev Fifth-Moment Inequality using m̂5; expAzumaHoeffding

- Azuma-Hoeffding Inequality of Theorem 6.2.1. (left) Rescaled version to directly com-
pare Azuma-Hoeffding and Chebyshev-5. (right) Rescaled version to directly compare
Azuma-Hoeffding and Chebyshev-5 on a large deviation P (countn) ≥ 30.

To address (ii), one may consider the class of PSTS without demonic nondeterminism and with

constant fork probabilities. We speculate that such a restriction of the operational model may con-

stitute a class of stochastic systems for which sufficient conditions to establish square integrability

exist. The importance of the COM results, however, requires a careful formal treatment of this

topic. We reserve as future work finding sufficient conditions to establish square integrability.

We compare the tightness of the Azuma-Hoeffding inequality to the Markov and Chebyshev

ones when applied to Example 6.2.1.

Example 6.2.2. Figure 6.3 present a comparison of the Azuma-Hoeffding bounds and the standard

bounds that rely on the empirical estimates of the moments. Notice that Chebyshev Higher-Moment

inequality with estimate m̂5 provides a very tight upper bound on the empirical probability of count ≥

T for T ≥ 11. This is to be expected as in incorporates strong runtime results. However, the bound
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that this inequality provides decreases only polynomially in the size of the deviation |X − E(X)|.

Eventually, all exponential bounds overtake this inequality as demonstrated in Figure 6.3 (left,

right) for Azuma-Hoeffding.

Conclusion. In general, we conclude that concentration of measure inequalities provide a

formal framework for bounding the probability of rare events in the form of large deviations. For

such events statistical methods based on empirical estimates and confidence intervals (i.e., hypoth-

esis testing) fail to provide satisfactory results. Martingale probability bound inequalities such as

the Azuma-Hoeffding inequality (and those based on square integrable martingales) significantly

improve upon general COM results by incorporating the properties of the underlying stochastic

processes.

6.3 Expected Values and Concentration Results of Hitting Times

In Chapter 4 we proved that additive and multiplicative supermartingales almost surely

converge. We carefully used these convergence results to prove almost sure reachability of a target

region T using the notion of stopping (or hitting) times. In this section we formalize the notion of

the expected time to fulfill such a property.

Let Π be a PSTS and T be a target set of states. Let V be the corresponding c-additive

supermartingale certificate according to rule reach-add, for some c > 0, and ε > 0 as the target

level set for reaching T . Let {Vn}∞n=0 be the c-additive supermartingale over the executions of Π

with E(V0) <∞. Let τε ≜ {minn ∈ N |Vn ≤ ε} be the hitting time of T .

In the proof of Theorem 4.3.3 we showed that τε <∞ a.s.; hence, E(τε) <∞. Our goal here

is to derive an upper bound on the expectation.

Lemma 6.3.1. Let V, ε be the certificate and level set bound according to reach-add. Let τε be

the hitting time of T , then

E(τε) ≤
E(V0)− E(Ṽ )

c
,

where Ṽ is the limit random variable Vn → V a.s.
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Proof. First, we prove by induction that for all n ≥ 1, E(Vn) ≤ E(V0)− c
∑n

i=0 P (Vi ≥ ε).

E(Vn+1) = E (E(Vn+1 | Fn)) , by the law of total expectation

≤ E
(
E(Vn)− c1{Vn≥ε}

)
, by definition, drift outside (p4)

= E(Vn)− cE(1{Vn≥ε}), by linearity of expectation

≤ E(V0)− c ·
∑n−1

i=0 P (Vi ≥ ε)− cP (Vn ≥ ε), by the IH

≤ E(V0)− c ·
∑n

i=0 P (Vi ≥ ε).

Next, observe that by Theorem 2.2.2, we know that Vn → Ṽ almost surely. This means that

lim
n→∞

P (Vn ≥ ε) = 0 and τε <∞ almost surely.

Then

E(τε) =
∞∑
i=0

P (τε ≥ i) =

∞∑
i=0

P (Vi ≥ ε)

=

(
1

c

)(
c ·

∞∑
i=0

P (Vi ≥ ε)

)

≤
(
1

c

)
(E(V0)− E(M))

≤ E(V0)− E(Ṽ )

c
.

This result is similar to the ones in Ferrer et al. [67, Lemma 5.5] (where the proof first

appeared) and Chatterjee et al. [36, Proposition 1].

Example 6.3.1. Consider the “The tortoise and hare” program of Example 5.0.1. Using the

constraint synthesis technique of Chapter 6 we were able to infer the super martingale expression

t− h+ 9. Notice that initially t = 30, h = 0; therefore, (t− h+ 9)0 = 39. On every step the value

of this expression decreases in expectation by c = 1.5. It satisfies the conditions of reach-add

with ε = 9 and so the system terminates almost-surely in expected at most E(τε) ≤ 39−9
1.5 = 20 steps.

Let V be the α-multiplicative supermartingale certificate according to rule reach-geom, for

some α ∈ (0, 1), and ε > 0 as the target level set for reaching T . Let {Vn}∞n=0 be the α-multiplicative
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supermartingale over the executions of Π with E(V0) < ∞. Let τε ≜ {minn ∈ N |Vn ≤ ε} be the

hitting time of T .

Lemma 6.3.2. Let V, ε be the certificate and levelset bound according to reach-geom. Let τε

be the hitting time of T , then

E(τε) ≤
E(V0)
c

,

where c = min(1− α, α).

Proof. First, we prove by induction that for all n ≥ 1,

E(Vn) ≤ E(V0)− c

n−1∑
i=0

P (Vi ≥ ε),

where c = min(1− α, α).

Base Case: Let n = 0, then E(V0) ≤ E(V0).

Inductive Step:

E(Vn+1) = E(E(Vn+1 | Fn)), by the law of total expectation

≤ E (αVn) , by definition

= E (Vn − (1− α)Vn) , arithmetic

≤ E(Vn)− βE(Vn), by lin. of expectation; β = min(1− α, α)

= E(Vn)− βE(Vn1{Vn≤ε} + Vn1{Vn≥ε}), split S into S \ T and T , Vn ≥ 0

≤ E(Vn)− βE(ε1{Vn≥ε}), arithmetic, βVn1{Vn≥c} ≥ 0

= E(Vn)− βεE(1{Vn≥ε}), by linearity of expectation, c = βε

≤ E(V0)− c
∑n−1

i=0 P (Vi ≥ ε)− cP (Vn ≥ ε), by the IH

≤ E(V0)− c
∑n

i=0 P (Vi ≥ ε).

Next, by Theorem 4.3.1 we know Xn → 0 almost surely. This means that

lim
n→∞

P (Vn ≥ ε) = 0 and τε <∞ almost surely.

Finally, since expect(Vn) =
∑∞

i=0 1{Vn≥ε} → 0 as n→ 0.

E(τε) =
∞∑
i=0

P (τε ≥ i) =

∞∑
i=0

P (Vi ≥ ε) ≤ E(V0)
c

.
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6.4 Additional Applications

CLT. For the program in Example 6.1.1 we inferred 2x − i is a martingale. Its change at

any step is bounded by ±1. The initial value of the expression is: (2x − i)0 = 0. We also know

that and i500 = 500. Therefore, if we choose t = 50, we conclude that after N = 500 steps,

P (|(2x− i)500 − (2x− i)0| ≥ 50) ≤ 2 exp

(
− 2500

2× 500× 1

)
≤ 0.16.

Simplifying, with probability at least 0.84, we conclude that x ∈ [200, 300] after 500 steps.

Since the bounds depend on the number of steps n taken from the start, they are easiest to

apply when n is fixed or bounded in an interval. Another idea that allows us to infer bounds tight

bounds is to consider deviations “proportional” to the number of steps: |Mn −M0| ≥ a
√
n, for

constants a > 0 and n ≥ 0. For n > 0, we conclude the bounds

P (|(2x− i)n − (2x− i)0| ≥ a
√
n) ≤ 2 exp(−a

2n

2n
) ≤ 2 exp(−a

2

2
).

For a = 3, the upper bound is 0.0223.

Robot Dead Reckoning. In Section 5.4.1 we found that expressions x−estX and y−estY

are martingales at the loop head of the program in Figure 5.2 (left). In each case the absolute

change in the martingales is bounded by 0.05. Given the initial difference of 0 between the values,

we infer using Azuma-Hoeffding theorem that P (|x − estX| ≥ 3) ≤ 1.5 × 10−3. In contrast, a

worst-case analysis concludes that |x − estX| ≤ 0.05 ∗ 500 ≤ 25. The analysis for y − estY yields

identical results.



Chapter 7

Inductive Expectation Invariants

In Chapter 4 we showed that supermartingale expressions induce supermartingale stochastic

processes when evaluated along the sample runs of a polynomial stochastic transition system. In

Chapter 5 we then presented a constraint based procedure to infer supermartingale expressions.

In the current we present a generalization of the idea that martingale expressions act as

expectation invariants. An expectation invariant is a program expression e whose expectation

at any given iteration of the loop exists and is always nonnegative.

First, we formally define this notion and prove using mathematical induction that a given

program expression is invariant. This allows us to formulate an induction based proof rule to lift the

notion of expectation invariants to a set of expressions that together acts as an inductive invariant

over the expected values of expressions. We present an abstract interpretation based procedure

that mechanizes the generation of conic inductive expectation invariants.

7.1 Expectation Invariants

Expectation invariants are invariant inequalities on the expected value of program expres-

sions. Therefore, one could view the set of possible state distributions Di at step i as the concrete

domain over which our analysis operates to produce the abstract facts in the form of expectation

invariants over these distributions. We formalize the notion of expectation invariants and derive

a fixed point characterization of expectation invariants in the next section.
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7.1.1 Definitions and Examples

In this chapter we focus on probabilistic programs with loops that can be converted into a

PSTS with a single location representing the loop head and force all transitions T to be self-loops.

This simplifies our transitions to τ : ⟨g, fτ ⟩ where g is the transition guard (previously φτ ) and

fτ : {f1, . . . , fk} is the transition update function with forks f1, . . . , fk. An execution step starts

at and returns to the loop head; therefore, Dn is now the distribution (at the n-th step) over the

reachable states in X.

We refer to such PSTS as probabilistic loops P : ⟨T ,D0, n⟩, where n is the value of the

loop counter. When P is clear from the context we write preE(e) to denote the pre-expectation

expression corresponding to e and if we want to emphasize the distribution over which the expected

value is taken we write preE(Dn, e).

Example 7.1.1. Below is our motivating example probabilistic program with the corresponding

probabilistic loop. To eliminate the final location, we introduce a stuttering transition which pre-

serves the values of the program variables when the loop guard (x+ y > 10) is violated.

real x := rand(-5,3)

real y := rand(-3,5)

int count := 0

while (x+y <= 10)

if flip (3/4)

x := x + rand (0,2)

y := y + 2

count++

real x := rand(-5,3)

real y := rand(-3,5)

int count := 0

while (forever)

if (x + y <= 10)

if flip (3/4)

x := x + rand (0,2)

y := y + 2

count++

else // if (x + y > 10)

// Preserve x,y,count

τ1 (loop body)

g1 : (x+ y ≤ 10)

fτ1 :



f1 :

 x′ 7→ x+ r1,

y′ 7→ y+ 2,

count′ 7→ count+ 1,

 w.p. 3
4

f2 :

 x′ 7→ x,

y′ 7→ y,

count′ 7→ count+ 1,

 w.p. 1
4

τ2 (stuttering)

g2 : (x+ y > 10)

fτ2 :


x′ 7→ x,
y′ 7→ y,
count′ 7→ count,
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Let P : ⟨T ,D0, n⟩ be a probabilistic loop and let ⟨x0, 0⟩ be the initial state of the system.

From Section 4.1 we know that x0 is drawn from an initial distribution D0 and that any n-step

sample execution of P defines a sample trajectory through the distributions of reachable states

D0, . . . ,Dn at step i for any 0 ≤ i ≤ n. We then define the expectation of a program expression

e at time step n as E(e |n) ≜ EDn(e).

Notation: We denote the expectation of an expression e over the program variables at the

jth step as E(e |n = j) or equivalently EDj (e). Unless otherwise mentioned, e will denote an affine

(or linear) expression over the program variables.

Definition 7.1.1 (Expectation Invariants). An expression e over the program variables X is called

an expectation invariant (EI) if and only if for all n ≥ 0, E(e |n) ≥ 0.

Thus, expectation invariants are program expressions whose expectations over the initial

distribution are nonnegative, and under any number n ≥ 0 of iterations of the probabilistic loop

remain non-negative.

Example 7.1.2. Consider the program from Example 7.1.1, and the expression y − x. Initially,

E(y− x | 0) = ED0(y− x) = 1− (−1) = 2 ≥ 0. We can show that E(y− x | i) = E(y | i)−E(x | i) ≥ 0

at any step i. Therefore, y− x is an expectation invariant.

7.1.2 Martingales and Expectation Invariants

Expectation invariants as given by Definition 7.1.1 are closely related to the concept of

(super-, sub-) martingales. In fact, martingales naturally yield expectation invariants.

Lemma 7.1.1. For every supermartingale expression e the expression e0 − e is an expectation

invariant, wherein e0 = E(e |n = 0).

Proof. First, we observe that for all x, preE(e) ≤ e. Therefore, assuming that the expectations on

both sides exist, we have for all n ≥ 0, preE(Dn, e) ≤ EDn(e).
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We now prove that E(e0 − e |n) ≥ 0 for all n ∈ N by induction. Clearly, for n = 0, the

statement holds. Furthermore, assume that E(e0 − e |n = j) holds, we obtain

E(e0 − e |n = j + 1) = E(e0 − preE(e) |n = j)

= e0 − E(preE(e) |n = j)

≥ e0 − E(e |n = j) ≥ 0.

However, expectation invariants can arise without martingales, as shown by the following

simple example that repeatedly swaps two variables x, y: Notice that expressions x and y are

real x := rand(0, 5)

real y := rand(4, 7)

while (true)

x := y + unifRand (-1,1)

y := x + unifRand (-2,2)

expectation invariant. However, they are not martingales. In fact, to prove that E(x) ≥ 0, at any

step, we require that E(y) ≥ 0 at the previous step.

Therefore, the notion of expectation invariants subsumes that of martingales as defined here.

Drawing analogies to the familiar case of Floyd-Hoare invariants, martingales correspond to as-

sertions which are invariant by themselves, whereas expectation invariants are analogous to the

general case of mutually inductive invariants [117].

7.1.2.1 Proving Expectation Invariance

We now focus on the question of proving that a given expression e over the program variables

is an expectation invariant. This requires constructing (approximations) to the distribution Dn

for each n, or alternatively, an argument based on mathematical induction. We first observe an

important property of each Dn.
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Definition 7.1.2 (Admissible Distribution). We say that a distribution D over the state-space X

is admissible if all moments exist.1 In other words, for any polynomial p(x) over the program

variables, ED(p(x)) exists, and is finite.

Lemma 7.1.2. For any polynomial expression e(x) over the program variables, and any n ∈ N,

EDn(e) exists (and is finite).

Let us assume that any program P which we attempt to analyze is such that

(1) D0, the initial state distribution, is admissible;

(2) For each transition τ , the distribution of the random variables DR is admissible.

Under these assumptions, we invoke Lemma 7.1.2 to conclude that Dn is admissible for each

n ≥ 0. However, rather than construct Dn explicitly for each n (which can be impractical), we

formulate the principle of inductive expectation invariants. Consider expressions E = {e1, . . . , em}

wherein each ei is a linear (or polynomial) expression involving the program variables.

Definition 7.1.3 (Inductive Expectation Invariants). The set E of expressions forms an inductive

expectation invariant of the program P if and only if for each ej, j ∈ [1,m],

(1) ED0(ej) ≥ 0, i.e., the expectation at the initial step is non-negative.

(2) For every admissible distribution D over the state-space X ,

(ED(e1) ≥ 0 ∧ · · · ∧ ED(em) ≥ 0) |= preE(D, ej) ≥ 0 . (7.1)

The inductive expectation invariant principle stated above follows the standard Floyd-Hoare

approach of “abstracting away” the distribution at the nth step by the inductive invariant itself,

and using these to show that the invariant continues to hold for one more step. Furthermore, it

abstracts away from a specific Dn to any admissible distribution D.

1 While the existence of only the first moment suffices, our experiments demonstrate that our current synthesis
approach can be extended to polynomial expectation invariants.
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Theorem 7.1.1. Let E : {e1, . . . , em} be inductive expectation invariants (Definition 7.1.3), it

follows that each ej ∈ E is an expectation invariant of the program:

∀n ∈ N, E(ej |n) ≥ 0

Proof. The proof uses the important fact that each distribution Dn is admissible. We prove by

simultaneous induction that
m∧
j=1

E(ej |n) ≥ 0 .

Base-Case: The base case for n = 0 follows from item (1) of Definition 7.1.3.

Induction Step: Let us assume that the required statement holds for n and attempt to show for

n+ 1. Using Equation (7.1), and the admissibility of Dn, we note that for each j ∈ [1,m],

(EDn(e1) ≥ 0 ∧ · · · ∧ EDn(em) ≥ 0) |= preE(Dn, ej) ≥ 0

Therefore, we conclude that preE(Dn, ej) ≥ 0. Since, EDn+1(ej) = preE(Dn, ej), we conclude that

EDn+1(ej) ≥ 0 for each j. Thus, the induction step is proven.

However, Definition 7.1.3 is quite unwieldy, in practice, since the quantification over all

possible admissible distributions D over the state space X is a higher order quantifier (over

probability spaces and measurable functions). Rather than reason with this quantifier, we will use

the following facts about expectations to formulate a new principle:

Theorem 7.1.2 (Facts About Expectations over Admissible Distributions). The following hold

over all possible admissible distributions D over a σ-algebra X , linear assertion φ, and linear (or

polynomial expressions) e, e1, . . . , ek:

(1) Linearity of expectation: ED(λ1e1 + . . .+ λkek) = λ1ED(e1) + · · ·+ λkED(ek), for λi ∈ R.

(2) If φ |= e ≥ 0 then ED(1φ × e) ≥ 0, provided JφK is measurable. Specifically,

ED(1e≥0 × e) ≥ 0.

(3) ED(1φe+ 1¬φe) = ED(e), provided JφK is measurable.
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Using these facts as “axioms”, we attempt to reformulate the key step 2 of Definition 7.1.3

as a simple quantified statement in (first-order) linear arithmetic. Consider, once again, the key

statement of the principle (7.1). The central idea of our approach is to express the pre-expectation

preE(ej) for each ej ∈ E as

preE(ej) =
m∑
i=1

λj,iei +
∑
p

µj,p(1φp × gp) , (7.2)

wherein λj,i ≥ 0 and µj,p ≥ 0 are real-valued multipliers, gp are linear expressions over the program

variables and φp are assertions such that φp |= gp ≥ 0. The origin of the expressions gp and

assertions φp will be made clear, shortly. Let us fix a finite set of expressions E = {e1, . . . , em}.

Lemma 7.1.3. Suppose for all ei ∈ E, the principle (7.2) holds:

preE(ej) =
m∑
i=1

λj,iei +
∑
p

µj,p(1φp × gp) ,

for some λj,i ≥ 0, µj,p ≥ 0 and φp |= gp ≥ 0, then E satisfies the original induction principle (7.1):

For all admissible D, (ED(e1) ≥ 0 ∧ · · · ∧ ED(em) ≥ 0) |= ED(preE(ej)) ≥ 0 .

Proof. Let E be such that for each ei ∈ E, we satisfy (7.2) as below:

preE(ej) =
m∑
i=1

λj,iei +
∑
p

µj,p(1φp × gp) ,

for some λj,i ≥ 0, µj,p ≥ 0 and φp |= gp ≥ 0.

Let D be any admissible distribution such that
m∧
j=1

ED(ej) ≥ 0. Using, linearity of expecta-

tion, we note that

ED

(
m∑
i=1

λj,iei

)
=

m∑
i=1

λj,i ED(ei)︸ ︷︷ ︸
≥0

≥ 0 . (7.3)

Similarly, applying Theorem 7.1.2, we note that ED(1φp × gp) ≥ 0.

ED

(∑
p

µj,p (1φp × gp)

)
=
∑
p

µj,pED
(
1φp × gp

)︸ ︷︷ ︸
≥0

≥ 0 (7.4)
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Combining, (7.3) and (7.4), we note that

preE(D, ej) = ED

(∑m
i=1 λj,iei +

∑
p µj,p (1φp × gp)

)
From Stmt. of Thm.

= ED (
∑m

i=1 λj,iei) + ED

(∑
p µj,p (1φp × gp)

)
≥ 0 Applying (7.3) and (7.4)

7.2 Conic Inductive Expectation Invariants

We now formalize this intuitive notion of inductive invariants using the concept of conic

inductive expectation invariants. Let P be a program with transitions T . Let gi be a linear

assertion representing the guard of the transition τi. We express gi as
∧ni

j=1 gi,j ≥ 0, wherein gi,j are

affine program expressions. Let gi : (gi,1 . . . gi,ni)
T be a vector representing gi. Likewise, let E =

{e1, . . . , em} be a finite set of expressions, we denote the vector of expressions as e : (e1, . . . , em)T .

Definition 7.2.1 (Conic Inductive Expectation Invariants). The finite set E is a conic inductive

invariant of the program P if and only if for each ej ∈ E,

(1) Initial Condition: ED0(ej) ≥ 0 over the initial distribution D0;

(2) Induction Step: There exists a vector of multipliers λj ≥ 0, such that for each transition

τl : (gl,Fl), expression preEτl(ej) can be expressed as a conic combination of expressions

in E and the expressions in gl:

For each ej (∃ λj ≥ 0) (∀ τl ∈ T ) (∃ µl ≥ 0) preEτl(ej) = λTj e+ µTl gl . (7.5)

In particular, we note that the order of quantification in Equation (7.5) is quite important.

We note for a given expression ej the multipliers λj must stay the same across all the transitions

τl ∈ T . This will ensure the applicability of the linearity of expectation.

Example 7.2.1. The set E = {e1 : y − 2x, e2 : 2x − y + 3, e3 : 4x − 3count + 4, e4 :

−2x+y−3, e5 : −4x+3count−4} is a conic inductive invariant for the program in Example 7.1.1.
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Consider e1 : y− 2x. We have

preEτ1(e1) : Er1

(
3

4
(y+ 2− 2x− 2r1) +

1

4
(y− 2x)

)
= y− 2x.

Likewise, preEτ2(e1) : e1, since τ2 is a stuttering transition.

Therefore, setting λ : (1 0 0 0 0)T , we obtain preE(e1) : λTe+ 0× 1x+y≤10 .

Changing the order of quantification in Equation 7.5 makes the rule unsound. In particular,

we will address the need to maintain the multipliers λj the same across all transitions. Consider a

variant of the Equation (7.5), as below:

For each ej (∀ τl ∈ T ) (∃ λj ≥ 0) (∃ µl ≥ 0) preEτl(ej) = λTj e+ µTl gl . (7.6)

Such a rule seems like a natural encoding of the implication:

m∧
j=1

ej ≥ 0 ∧
q∧

k=1

gl,k ≥ 0 |= preEτl(ej) ≥ 0 .

The following example demonstrates the unsoundness of the rule (7.6).

Example 7.2.2. Consider the program below:

real x := unifRand (-1,1)

while (true)

if ( x <= 0)

x := 2 * x;

else

x := x / 2;

X : {x}
⊤ : {τ1, τ2}

τ1 :

{
g1 : x < 0
F1(x) : 2x

τ2 :

{
g2 : x ≥ 0
F2(x) : 0.5x

D0 : Uniform[−1, 1]

First, we observe that ED0(x) = 0. This gives us two IEI candidates x and −x. Using the

rule in Equation 7.6 we obtain:

• For transition τ1, we have

preEτ1(x) = 2× (x), and preEτ1(−x) = 2× (−x);
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• For transition τ2, we have

preEτ2(x) = 0.5× (x), and preEτ2(−x) = 0.5× (−x).

This means that according to rule (7.6), we can conclude that E(x |n) ≥ 0 and E(−x |n) ≥ 0, and

so E(x |n) = 0 for all n ≥ 0. This is clearly false since any negative initial value of x only ever

execute τ1 and grows unbounded!

The correct version of the rule (7.5), is able to correctly prove the invariance of −x and

disprove x.

Lemma 7.2.1. Let E : {e1, . . . , em} be a conic inductive invariant for a program P as given by

Definition 7.2.1. It follows that each ej satisfies Equation (7.2):

preE(ei) =
n∑

j=1

λj,iej +
∑
p

µi,p(1φp × gp) ,

for λj,i, µi,p ≥ 0 and φp |= gp ≥ 0.

Proof. We note that for each ei, the expression:

preE(ei) :
∑
τ∈⊤

1gτ × preEτ (ei) . (7.7)

From (7.2), there exists λ such that for each transition τ ,

preEτ (ei) = λTe+ µTgτ .

Here the guard assertion for τ is given by gτ ≥ 0. Substituting this into Equation (7.7) yields,

preE(ei) =
∑

τ∈⊤ 1gτ≥0 ×
(
λTe+ µTτ gτ

)
=

∑
τ∈⊤ 1gτ≥0 ×

(
λTe

)
+
∑

τ∈⊤ 1gτ≥0 ×
(
µTτ gτ

)
= λT

∑
τ∈⊤ 1gτ≥0 × e+

∑
τ∈⊤ 1gτ≥0 ×

(
µTτ gτ

)
.

In particular, we note that having a common set of multipliers λ across transitions allows us to

rewrite the summation
∑

τ∈⊤ 1gτ≥0 ×
(
λTe

)
as λT

∑
τ∈⊤ 1gτ≥0 × e. Next, since the transition
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guards are mutually exclusive and exhaustive, it follows that
∑

τ∈⊤ 1gτ≥0 × e = e. Therefore, we

write

preE(ei) = λTe+
∑
τ∈⊤

1gτ≥0 × µTτ gτ .

This concludes the proof.

Theorem 7.2.1. Let E be a conic inductive invariant for a program P as given by Definition 7.2.1.

It follows that each ej ∈ E is an expectation invariant of the program.

Proof. Proof simply combines Lemma 7.2.1 with Lemma 7.1.3.

7.2.1 Pre-Expectation Closed Cones

Thus far, we have presented inductive expectation invariants as a finite set of expressions

E = {e1, . . . , em}, satisfying the conditions in Definition 7.1.3 or 7.2.1. We transfer our notion

from a finite set of expressions to a finitely generated cone of these in preparation for our fixed

point characterization in the next section.

Definition 7.2.2 (Cones). Let E = {e1, . . . , ek} be a finite set of program expressions over the

program variables x. The set of conic combinations (the cone) of E is defined as

Cone(E) =

{
λ0 +

k∑
i=1

λiei | 0 ≤ λi, 0 ≤ i ≤ k

}
.

Expressions ei are called the generators of the cone.

Given a non-empty linear assertion assertion φ :
∧k

i=1 ei ≥ 0, it is well-known that φ |= e ≥ 0

iff e ∈ Cone(e1, . . . , ek). Likewise, let E be an inductive expectation invariant. It follows that any

e ∈ Cone(E) is an expectation invariant of the program P.

Example 7.2.3. Revisiting Example 7.2.1, we consider the conic combination:

4(−2x+ y− 3) + 3(4x− 3count+ 4) = 4x+ 4y− 9count
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As a result, we conclude that EDn(4x+ 4y− 9count) ≥ 0 at each step n ≥ 0.

Analyzing the program by replacing the probabilistic statements with non-deterministic choice,

and performing polyhedral abstract interpretation yields the invariant x+ y ≤ 14 [52]. This allows

us to bound the set of support for Dn, and also allows us to conclude that EDn(14 − x − y) ≥ 0.

Combining these facts, we obtain,

EDn(56− 9count) ≥ 0, or equivalently, EDn(count) ≤
56

9
.

Conic Representations: A finitely generated cone Cone(e1, . . . , ek) of affine expressions

e1, . . . , ek is represented using a polyhedral cone. Specifically, let e : c0 + cTx be any element

of the cone. The polyhedral cone representation uses variables (c0, c). Such a polyhedron can be

represented using the constraint representation as:

C : P

 c

c0

 ≤ 0

or as a set of generators given by the coefficient vectors of the expressions e1, . . . , ek.

Example 7.2.4. Consider the cone generated by expressions

e1 : −2x+ y − 3, e2 : 4x− 3z + 4 .

Any element of the cone can be written as c0 + c1x+ c2y + c3z wherein the constraints:

(∃ λ1, λ2 ≥ 0)

 c0 = −3λ1 + 4λ2 ∧ c1 = −2λ1

c2 = λ1 ∧ c3 = −3λ2


Alternatively, we may express the cone with a vertex (c0, c1, c2, c3) : (0, 0, 0, 0) and rays:



−3

−2

1

0


,



4

4

0

−3
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7.2.2 Expectation Invariants as Fixed Points

In this section, we show that the notion of conic invariants as presented in Definition 7.2.1

can be expressed as a (pre-) fixed point of a monotone operator over finitely generated cones

representing sets of expressions. This naturally allows us to use abstract interpretation starting

from the cone representing all expressions (⊤) and performing a downward Kleene iteration until

convergence. We use a (dualized) widening operator to ensure fast convergence to fixed point in

finitely many iterations.

Let P be a program over variables x with transitions T : {τ1, . . . , τk} and initial distribution

D0. For simplicity, we describe our approach to generate affine expressions of the form c0 + cTx

for c0 ∈ R, c ∈ Rn. Let A(x) represent the set of all affine expressions over x.

Polyhedral Cones of Expectation Invariant Candidates: Our approach uses finitely

generated cones I : Cone(E) where E = {e1, . . . , em} is a finite set of affine expressions over x.

Each element e ∈ I represents a candidate expectation invariant. Once a (pre-) fixed point is

found by our technique, we obtain a cone I∗ : Cone(E∗), wherein E∗ will be shown to be a conic

inductive invariant according to Definition 7.2.1.

A finitely generated cone of affine expressions I : Cone(E) is represented by a polyhedral

cone of its coefficients C(I) : {(c0, c) | c0+cTx ∈ I}. The generators of C(I) are coefficient vectors

(c0,i, ci) representing the expression ei : c0,i + cTi x.

Our analysis operates on the lattice of polyhedral cone representations, Cones, ordered by

the set theoretic inclusion operator ⊆. This is, in fact, dual to the polyhedral domain, originally

proposed by Cousot & Halbwachs [52].

Initial Cone: For simplicity, we will assume that D0 is specified to us, and we are able to

compute ED0(x) precisely for each program variable. The initial cone I0 is given by

I0 : Cone ({x1 − ED0(x1),ED0(x1)− x1, · · · ,ED0(xn)− xn, xn − ED0(xn)}) .

Such a cone represents the invariant candidates xi = ED0(xi). The representation of the initial

cone is given by the set of 2n rays of the form [ED0(xi) 0 · · · 0 ± 1 0 · · · 0].
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Pre-Expectation Operators: We now describe the parts of the monotone operator over

finitely generated cones. Let E = {e1, . . . , em} be a set of expressions. Let τ : ⟨g, fτ ⟩ be a

transition, wherein g :
∧p

l=1 gl ≥ 0. We first present a pre-expectation operator over cones, lifting

the notation preEτ from expressions to cones of such:

Definition 7.2.3 (Pre-Expectation Operator). The pre-expectation of a cone I : Cone(E) w.r.t

a transition τ is defined as:

preEτ (I) = {(e, λ) ∈ A(x)× Rm | λ ≥ 0 ∧ ∃ µ ≥ 0 (preEτ (e) ≡
m∑
j=1

λjej +

p∑
i=1

µigi) }.

The refinement preEτ (I) of a cone contains all affine program expressions whose pre-expectation

belongs to the conic hull of I and the cone generated by the guard assertion. For technical reasons,

we attach to each expression a certificate λ that shows its membership back in the cone. This can

be seen as a way to ensure the proper order of quantification in Definition 7.2.1.

Given a polyhedron C(I) representing I, we can show that C(preEτ (I)) is a polyhedral cone

over the variables (c0, c) representing the expression coefficients and λ for the multipliers.

Lemma 7.2.2. For a given cone C, the pre-expectation operator across a transition preEτ (C) is

also a cone.

PreExpectation of Cones: First, we define the lifting of preEτ (I) for a single cone of

expressions I. Let τ be given by the guard set
l∧

i=1
gT
i x + hi ≥ 0, and update with forks f1, . . . , fk

wherein fi : Aix + Bir + ai is taken with probability pi. Consider a generic next state affine

expression: e : c0 + cTx′. We write

preEτ (e) : c0 + cT (p1A1 + · · ·+ pkAk)x+ cTEDR
(p1B1r+ · · ·+ pkBkr) + cT (p1a1 + · · ·+ pkak) .

Simplifying, we write

preEτ (e) : (c0 + αTc) + cTBx .

Let I be the cone generated by the expressions {e1, . . . , ek} wherein ej : d0,j + dT
j x. The gen-

erators of the cone are given by the rays (d0,j ,dj) for j = 1, . . . , k. We compute an augmented
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representation of the cone I given by the constraints:

PI(d0,d, λ, µ) : λ ≥ 0 ∧ µ ≥ 0 ∧ d0 =
k∑

j=1

λjd0,j +
l∑

i=1

µihi ∧ d =
k∑

j=1

λjdj +
l∑

i=1

µigi .

The polyhedron PI represents all combinations of expressions (d0 + dTx) that are derived by a

conic combination of expressions e1, . . . , ek through multipliers λ1, . . . , λk ≥ 0 and guard inequality

expressions g1, . . . ,gl through multipliers µ1, . . . , µl ≥ 0. The cone preEτ (I) is given as

preEτ (I) : (∃ µ) PI(c0 + αTc,BT c, λ, µ) .

Note that preEτ (I) is a polyhedron over variables (c0, c) representing an expression e : c0 + cTx

and multipliers λ ∈ Rk.

Example 7.2.5.

Next, we define a pre-expectation operator across all transitions:

preE(I) = {e ∈ A(x) | (∃ λ ≥ 0) (e, λ) ∈
k∩

j=1

preEτj (I)}

An expression e belongs to preE(I) if for some λ ≥ 0, (e, λ) ∈ preEτj (I) for each transition τj ∈ T .

Given a cone C(I), we first compute the cones C(Î1), . . . , C(Îk) representing the pre-expectations

across transitions τ1, . . . , τk, respectively. Next, we compute C(I ′) : (∃ λ)
k∩

j=1
C(Îj), representing

I ′ : preE(I), by intersecting the cones C(Îj) and projecting the dimensions corresponding to λ.

We define the operator G over cones as G(I) : I0 ∩ preE(I), where I0 is the initial cone.

Theorem 7.2.2. The operator G satisfies the following properties:

(1) G is a monotone operator over the lattice Cones ordered by set-theoretic inclusion.

(2) A finite set of affine expressions E is a conic inductive invariant (Definition 7.2.1) if and

only if I : Cone(E) is a pre-fixed point of G, i.e, I ⊆ G(I).
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7.2.3 Proof of Theorem 7.2.2

The details of the proof are quite intricate, so we build the proof of Theorem 7.2.2 in a bottom

up fashion.

Let P : ⟨T ,D0, n⟩ be a probabilistic loop with T = {τ1, . . . , τm}, where each transition is of

the form τi : ⟨gi,Fi⟩. We begin by showing that preEτ is a monotone operator.

Lemma 7.2.3. Let I1 = Cone(e1, . . . , em) and I2 = Cone(h1, . . . , hk) be two finitely generated

cones such that I1 ⊆ I2 and let τi ∈ T , then preEτi(I1) ⊆ preEτi(I2).

Proof. Let (e, λ) ∈ preEτi(I1) for some e ∈ A(x) and λ ≥ 0. By Definition 7.2.2, there exists µi ≥ 0

such that preEτi(e) = λT (e1 · · · ej)T + µTi gi.

Since I1 ⊆ I2 then for every generator ej of I1 there exist non-negative coefficients λj1, . . . , λjk

such that ej = λTj (h1 · · ·hk). Therefore, we can define the change of basis transformation

matrix Λ =


λ11 · · · λ1k

...
. . .

...

λm1 · · · λmk

 such that


e1

...

em

 = Λ


h1

...

hk

. Notice that Λ is independent of

τi; moreover, Λ is a non-negative matrix.

This means that preEτi(e) = λT (e1 · · · em)T + µTi gi = λTΛ(h1 · · ·hk)T + µTi gi. Therefore,

there exists a non-negative λ′ ≡ λTΛ such that (e, λ′) belongs to I2.

A consequence of Lemma 7.2.3 we see that for every (e, λ) pair in I1, there exists a unique

(e, λ′) pair in I2 regardless of the guard gi (and therefore, transition τi). The following result

follows immediately.

Lemma 7.2.4 (Monotonicity of preE). Let I1 = Cone(e1, . . . , em) and I2 = Cone(h1, . . . , hk) such

that I1 ⊆ I2, then preE(I1) ⊆ preE(I2).

Proof. If e ∈ preE(I1) then there exists a signature λ ≥ 0 such that (e, λ) ∈
∩

τ∈T preEτ (I1).

Define λ′ ≡ λTΛ. Then (e, λ′) belongs to
∩

τ∈T preEτ (I2). Therefore, e belongs to preE(I2). This

completes the proof of monotonicity.



114

Lemma 7.2.5. Let E be a conic inductive invariant, then Cone(E) ⊆ I0.

Proof. WLOG, let ei ∈ E, then by construction, ei is a generator of Cone(E). By Definition 7.2.1,

we know that ED0(ei) = k, for some k ≥ 0. On the other hand, ei is a linear expression, so

ei : c0 + cTx for some c0 ≥ 0, c ≥ 0.

I0 ≡ Cone({1, x1 − ED0(x1),ED0(x1)− x1, · · · , xn − ED0(xn),ED0(xn)− xn}).

For every j ≥ 1, define (λ2j−1, λ2j) ≡ (cj , 0) if cj ≥ 0 and (0,−cj) otherwise. Finally, define

λ0 ≡ k −
∑
cj . It then follows that ei = λT i0 with λ = (λ0, λ1, · · · , λ2n) ≥ 0.

Therefore, ei ∈ I0.

Lemma 7.2.6. Let E be a conic inductive invariant and I = Cone(E), then I ⊆ preE(I).

Proof. Let e ∈ I, then by Definition 7.2.1, there exists a certificate λ ≥ 0 that satisfies the

requirements of Definition 7.2.2, simultaneously, for every transition.

Therefore, e ∈ preE(I).

Theorem 1 (Theorem 7.2.2). The operator G satisfies the following properties:

(1) G is a monotone operator over the lattice Cones ordered by set-theoretic inclusion.

(2) A finite set of affine expressions E is a conic inductive invariant (Def. 7.2.1) if and only

if I : Cone(E) is a pre-fixed point of G, i.e, I ⊆ G(I).

Proof. Part 1: Let I1 = Cone(e1, . . . , em) and I2 = Cone(h1, . . . , hk) such that I1 ⊆ I2. Expand-

ing the definition of G and applying Lemma 7.2.4, G(I1) = I0 ∩ preE(I1) ⊆ I0 ∩ preE(I2) = G(I2).

This completes the proof that if I1 ⊆ I2 then G(I1) ⊆ G(I2). Part 2 (⇒): Let E be a conic induc-

tive expectation invariant, then by Lemma 7.2.5, I = Cone(E) is a subset of I0. By Lemma 7.2.6,

we know I ⊆ preE(I). Therefore, by definition of G, I is a pre-fixed point of G.

(⇐): Let I = Cone(E) for some set of expressions E such that I ⊆ G(I). Then I ⊆

I0 ∩ preE(I). Since I ⊆ preE(I) then there exists a certificate λ ≥ 0 common for all transitions τ ;

this satisfies condition (2) of Definition 7.2.1. Now let e : c0+cTx be a linear expression in I. Since



115

I ⊆ I0, then e : λ′0 +
∑m

i=1[λ
′
2i−1(xi − ED0(xi)) + λ′2i(ED0(xi)− xi)] = λ′0 +

∑m
i=1[(λ

′
2i−1 − λ′2i)xi +

(λ′2i − λ′2i−1)ED0(xi)] for some non-negative scalars λ′j . Define κi ≡ λ′2i−1 − λ′2i. The expectation

ED0(e) = ED0 (λ
′
0 +

∑m
i=1[κixi − κiED0(xi)]) ≥ 0. Therefore, e satisfies Definition 7.2.1(1). Thus,

E is a conic inductive expectation invariant.

7.2.4 Iteration over Polyhedral Cones

Our goal is to compute the greatest fixed point of G representing the largest cone of expressions

whose generators satisfy Definition 7.2.1. We implement this by a downward Kleene iteration until

we obtain a pre-fixed point, which in the ideal case is also the greatest fixed point of G.

(J0 : A(x)) ⊇ (J1 : G(J0)) ⊇ · · · (Jk+1 : G(Jk)) · · · until convergence: Ji ⊆ Ji+1 .

However, the domain Cones has infinite descending chains and is not a complete lattice. Therefore,

the greatest fixed point cannot necessarily be found in finitely many steps by the Kleene iteration.

We resort to a dual widening operator ▽̃ to force convergence of the downward iteration.

Definition 7.2.4 (Dual Widening). Let I1, I2 be two successive cone iterates, satisfying I1 ⊇ I2.

The operator ▽̃(I1, I2) is a dual widening operator if:

• ▽̃(I1, I2) ⊆ I1, ▽̃(I1, I2) ⊆ I2;

• For every infinite descending sequence J0 ⊇ G(J0) ⊇ G2(J0) ⊇ · · · , the widened sequence

J ′
0 = J0, J

′
n = J ′

n−1▽̃Jn converges in finitely many steps.

A common strategy to compute an approximation of the greatest fixed point when using dual

widening is to delay widening for a fixed number K of iterations.

Example 7.2.6. Consider a simulation of a peg performing an unbounded random walk in two

dimensions (x, y). Starting at the origin, at every step the peg chooses uniformly at random a

direction {N, E, S, W} and a random step size r1 ∼ U [0, 2]. The program 2d-walk tracks the

steps (count) and the Manhattan distance (dist) to the origin.

The following table summarizes the result of the expectation invariant analysis:
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Cone Generators Constraints Cone Generators Constraints

I0
1, −count, count,

c0 ≥ 0 I4
1, 4− count, count, c0 + 4c4 ≥ 0,

x, −x, y, −y, dist, −dist, x, −x, y, −y, dist, −dist c0 ≥ 0

I1
1, 1− count, count, c0 + c4 ≥ 0,

I5
1, 5− count, count, c0 + 4c4 ≥ 0,

x, −x, y, −y, dist, −dist c0 ≥ 0 x, −x, y, −y, dist, −dist c0 ≥ 0

I2
1, 2− count, count, c0 + 2c4 ≥ 0, ..

.
..
.

..

.
x, −x, y, −y, dist, −dist c0 ≥ 0

I3
1, 3− count, count, c0 + 3c4 ≥ 0,

I∞
1, count, c4 ≥ 0,

x, −x, y, −y, dist, −dist c0 ≥ 0 x, −x, y, −y, dist, −dist c0 ≥ 0

The table shows the value of expression count is unbounded from above. To force convergence, we

employ dual widening after a predefined number (K = 5) of iterations.

Definition 7.2.5 (Standard Dual Widening). Let I1 = Cone(g1, . . . , gk) and I2 = Cone(h1, . . . , hl)

be two finitely generated cones such that I1 ⊇ I2. The dual widening operator I1▽̃I2 is defined as

I = Cone(gi | gi ∈ I2). Cone I is the cone generated by the generators of I1 that are subsumed

by I2.

Example 7.2.7. Returning to Example 7.2.6, we consider cone iterates I4, I5. In this case genera-

tor subsumption reduces to a simple containment check. Since generator 4−count is not subsumed

in I5, we arrive at I ′5 ≡ I4▽̃I5 = Ĩ∗ = I∞.

Note 4. Alternatively, one can define dual widening as a widening operator [86, 8] over the dual

polyhedron that the generators of I1, I2 give rise to. On the set of affine PSTS loop benchmarks

our dual widening approach and those based on [86] and [8] produce identical fixed points where

the difference in timings is not statistically significant.

7.3 Experimental Results

We present the experimental results of our prototype implementation that relies on PPL [8]

for manipulating the polyhedral representations of cones. Table 7.1 presents the summary of the

experiments we conducted on a set of probabilistic benchmarks. In Applendix A.1, we present a

description of these models and the expectation invariants obtained.
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Table 7.1: Summary of results: |X| is the number of program variables; |T | - transitions; # -
iterations to convergence; ▽̃ - use of dual widening. Lines L (Rays R) is the number of resultant
inductive expectation equalities (inequalities) as the fixpoint generators. Time t is taken on a
MacBook Pro (2.4 GHz) laptop with 8 GB RAM, running MacOS X 10.9.1 (where ε = 0.05 sec).

Name Description |X| |T | Iters Fixpt
t

# ▽̃ L R

mot-example Motivating Example 7.1.1 3 2 2 No 2 1 ≤ ε

mot-ex-inv Example 7.1.1 with loop inv. 3 2 2 No 2 2 0.10

mot-ex-poly Ex. 7.1.1 poly constr. (deg ≤ 2) 9 2 2 No 5 2 0.18

2d-walk Random walk in 2 dimensions 4 4 7 Yes 3 1 ≤ ε

aggregate-rv Accumulate RVs 3 2 2 No 2 0 ≤ ε

hare-turtle Stochastic Hare-Turtle race 3 2 2 No 1 1 ≤ ε

coupon5 Coupon Collector’s Problem (n = 5) 2 5 2 No 1 2 ≤ ε

fair-coin-biased Simulate biased coin with fair coin 3 2 3 No 1 1 ≤ ε

hawk-dove-fair Stochastic 2-player game (collab.) 6 2 2 No 4 1 ≤ ε

hawk-dove-bias Stochastic 2-player game (exploit) 6 2 2 No 3 1 ≤ ε

faulty-incr Faulty incrementor 2 2 7 Yes 1 1 ≤ ε

In all experiments we emphasize precision over computational effort. All examples except

mot-ex-loop-inv and mot-ex-poly run in under ε = 0.05 seconds, so we choose not to report

these timing. Accordingly, dual widening ▽̃ delay was set sufficiently large at K = 5 to only force

finite convergence but not to speed up computation. Nevertheless, the iterations converge quite

fast and in many cases without the use of widening. Programs 2d-walk and faulty-incr require

the widening (▽̃) operator to ensure convergence. In all cases, line generators of the final pre-fixed

point yield expectation invariants like E(e) = 0 and rays yield the invariants E(e) ≥ 0.

Comparison with PRINSYS. PRINSYS [82] implements the constraint-based quanti-

tative invariant synthesis approach developed by Katoen et al. [105]. The tool uses a manually

supplied template with unknown coefficients. The REDUCE computer algebra system is used to

perform quantifier elimination and simplify the constraints. We applied PRINSYS with a linear

template expression
∑

j cjxj for all state variables xj in the program. Our comparison was carried

out over the 6 benchmark examples distributed with the tool. The comparison checked whether

PRINSYS could discover quantitative invariants discovered by our approach. Table 7.2 presents a

summary of the comparison.
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From a total set of 26 inductive expectation invariants our tool generates, PRINSYS could

generate 3 of them. Notice that we had to manually provide some additional initial invariants which

PRINSYS was able to trivially, yet correctly prove invariant (denoted by asterisk in last column).

Overall, we observe that mutual inductive expectation invariants investigated in this paper provide

interesting, significant facts about the probabilistic loops in the PRINSYS benchmarks.

Next, we attempted to check whether PRINSYS can discover additional linear quantitative

invariants not discovered by our approach due to the incompleteness of widening. Unfortunately,

this check turned out inconclusive at the time of the experiment. The existing PRINSYS imple-

mentation automatically generates and simplifies nonlinear constraints on the template coefficients.

However, the process of deriving an actual quantitative invariant requires manually extracting so-

lutions from a set of nonlinear inequalities. Our manual efforts failed to find new invariants unique

to the PRINSYS tool, but the overall comparison remains incomplete since we could not arguably

find all solutions manually.

Finally, it is important to observe that PRINSYS can generate invariants for templates that

include indicator functions, while our technique curently does not. Similarly, PRINSYS handles

nondeterminism in the programs, while we do not.
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Table 7.2: Summary of comparison results: IEI - invariants generated by our tool; Iters, Time -
number of iterations, time for our tool to converge; PRINSYS - was PRINSYS able to infer this
quantitative invariant.

Name IEI Iters Time PRINSYS

biased-coin
2− 2b− count = 0

6 0.0877
No

3− 4x ≥ 0 No

binomial-update (M=20)
4x− 3n = 0

21 0.1337
No

x ≥ 0 No

cowboys
1− 7trn− cont ≥ 0

4 0.1146
No

6− 2trn− 6cont− 5cnt = 0 No

fair-coin
x− y = 0

6 0.0844
Yes

3− 4x ≥ 0 No
−4x+ 3count ≥ 0 No

geometric

x ≥ 0

29 0.1988

No
3x− flip = 0 No
4x− count = 0 No

count ≥ 0 Yes∗

unlimited-martingale

rounds ≥ 0

13 0.2

Yes∗

32c+ rounds ≤ 1600 No
c+ b = 51 No

(10 additional inequalities) No



Chapter 8

Future Work and Conclusion

In this dissertation we presented a deductive verification approach for qualitative (almost

sure) and quantitative reachability and repeated reachability properties of discrete time, infinite-

state polynomial stochastic systems. The central theme and main contribution is the identification

of martingale processes adapted to the stochastic system that aid our analysis efforts.

Martingale theory provides two types of theoretical results that are fundamental to our

verification approach:

• Martingales are stochastic processes that act as invariants in expected value across any

number of steps. They satisfy strong convergence properties that we leverage to prove

progress towards a target set of states.

• Martingales satisfy strong concentration of measure properties. There are tight probability

inequality bounds on the probability of large deviations of martingales from their initial

value.

We use the former type of results to construct the deductive proof framework for our qualitative

analysis. The soundness of this framework is founded upon the convergence results of these prop-

erties. The latter type of results we use in our quantitative analysis of reachability properties.

We demonstrated how the use of Azuma-Hoeffding type rules can be automated to provide tight

guaranteed upper bounds for probabilistic assertions (and rare events).

Inspired by interaction between martingales and the pre-expectation operator, we built static
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(program) analysis techniques to automatically infer supermartingale expressions and more general

expectation invariants. Using mathematical induction and symbolic reasoning about distributions

over the reachable states of a system, we extended the concept of expectation invariants to a sets

of conic inductive expectation invariants that in the future can be used in more sophisticated

verification tools.

Future Work. There are several future research directions that are worth exploring:

• Martingales have been used in financial applications to improve upon simulation techniques

(empirical martingale simulations [59]). However, to the best of our knowledge martingales

have not been used in simulation-based approaches by either the program or cyber-physical

system verification communities.

• A dual point to the above is how to infer martingales through simulation or by analyzing

fixed empirical datasets. This type of work has been explored in mathematical finance by

Bibby et al. [15].

• The research area of concentration of measure is an active one. Martingales have gained in-

creasing attention over the past two decades. It is important to understand the applications

of more advanced COM results to verification problems. For example, square integrability

and total variation measures provide even stronger concentration results [13].

• Martingales have been applied to the manual analysis of models others than the Markov

models presented here. Autoregressive regressive processes and finite memory filters seem

to be likely within the scope of verification techniques based on martingales.

• In Chapter 7 we saw that our simple abstract interpretation framework was also able to

derive polynomial inductive expectation invariants. Additionally, there exist constraint

based polynomial supermartingale generation techniques as we saw in Chapter 5.3 and

also [151, 35]. It is an interesting direction to try and extend such approaches to polynomial

inductive expectation invariants (pIEI).
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• Finally, extending the deductive and certificate generation techniques to continuous-time

stochastic systems [151] and stochastic hybrid systems is a challenging but promising future

direction.
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[69] Antonio Filieri, Corina S Păsăreanu, and Willem Visser. Reliability analysis in symbolic
pathfinder. In Proceedings of the 2013 International Conference on Software Engineering,
pages 622–631. IEEE Press, 2013.
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Appendix A

Benchmark Polynomial Stochastic Transition Systems

A.1 Affine Stochastic Transition Systems

Track: The Track benchmark describes a program that tracks a target value with feed-

back. Each step attempts to guess the target value (set to 113) within a range (+/-5) and obtains

a feedback that is equal to the difference between the current and the target. However, when the

system tries to update the current value, the updated value has some noise added to it. Once the

target is close enough in value, the process stops.

Our approach infers the martingale curValue and the super martingale count. The ranking

function −count is inferred as a SMRF. Another interesting set of super martingale maps infers

the expression curValue − 108 at the loop head and 0 at the loop exit. Likewise, we infer the

s.m. expression 118 − curValue at the loop head and 0 at the loop exit. Thus, we establish that

curValue is within the range [108, 118] with a high probability at loop exit.

2D Random Walk: This is a 2-dimensional random walk (see Fig. A.2 ) on an infinite

N ×N lattice. Each step is taken in either of the four directions with uniform probability. Variable

dist tracks the Manhattan distance to the origin.

Our tool finds the following martingales: x, y, dist and the following super martingale, that

serves as the ranking function −count.

Suppose we are interested in computing the probability that after n number of steps the

probability that distance is greater than 100
√
n. We know that the variable dist is a bounded

martingale that changes value by at most [−1, 1] at each step: |disti+1 − disti| ≤ 1. Therefore,
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applying Azuma’s theorem,

P (|distn − dist0| > 100
√
n) ≤ exp

−10000n
2
∑n

i=0
1 ∼ 3.369694 ∗ 10(−2172) .

Coupon Collectors: There are n = 5 coupon and we try to collect them all. We continue

obtaining coupons until we collect all n coupons. Figure A.3 shows the model. Obtaining a coupon

we don’t already have can be modeled by a geometric distribution with decreasing probability on

each iteration. Our tool finds the supermartingale: 5− i, which guarantees termination.

Additionally, we infer many interesting martingale maps. One such map annotates the first

loop with 12count + 65, the second with 12count + 50, the third with 12count + 30, the fourth

with 12count and the last loop head with the expression 0.

Fair-Bias Coin: This program simulates the outcomes of a coin whose expected value is

n
2 heads out of n flips using a biased coin and a single flip of a fair coin to initiate the sequence.

Although no termination criterion is specified, our tool infers the following 2 supermartingales:

2count−6heads and 6heads−4count. Using Azuma’s theorem, we can bound the range of heads

as a function of count.

Inverted Pendulum Controller Figure A.5 shows a discretized model of a closed loop

inverted pendulum controller that consists of an inverted pendulum on a movable cart. The con-

troller maintains the position of the cart close to the origin and the angle of the pendulum close

to vertical. We model disturbances that directly affect the cart velocity and its angular velocity.

Our approach does not infer any non-trivial super martingale on this example other than the super

martingale MAX−count. Abstract interpreters do not produce invariants that can help the synthesis

process.

Packing Variable Weight Objects Figure A.6 shows a model that captures the pack-

ing of objects in a carton. The objects can be of varying weights (“NORMAL”, “HEAVY”, or

“LIGHT”). Each iteration tracks how many heavy and light objects are in the carton. It tries to

balance the light and the heavy objects against each other. Our analysis produces many interesting

martingale and super-martingale expressions. Examples include the super martingale expressions
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40totalWeight − 57nMedium − 46nHeavy, and 2nHeavy − nMedium. Our approach also infers the

martingale 20totalWeight−17nPacked−3nMedium−6nHeavy, and 20totalWeight−20nMedium−

23nHeavy − 17nLight. These martingales are useful since they characterize the composition of a

carton’s weight in terms of the heavy, light and normal objects.

Convoy2 Figure A.7 shows a discrete model that tracks a convoy of cars in terms of

their positions xi, velocities vi and accelerations ai for i = 1, 2. The leader’s acceleration changes

randomly while the follower simply increases/decreases their acceleration based on the leader.

Our approach inferred the martingale a1. But was unable to infer other non-trivial properties.

We suspect that non-linear martingales may exist for this example.

A.2 Polynomial Stochastic Transition Systems

In this section, we illustrate our approach to proving recurrence and persistence properties

through motivating examples.

We show an example of proving recurrence property using a certificate function.

Example A.2.1. Consider the following stochastic process over (x, y):

x′ = x+ 1
2y + w1, y

′ = 1
2x+ y − w2

with normal random variables w1, w2 with mean −1 and variance 1. Suppose, we wish to show the

property □♢(x− y <= 0).

For this system, we use the rule Rec in page 67 using the function

V (x, y) :


x− y x− y ≥ 0

0 otherwise

It is easy to check that the premises are satisfied by the system, and therefore, the system

indeed satisfies the required recurrence property.

Example A.2.2. Consider a Markov jump linear system (MJLS) model similar to the example

in Section 4.4.3 with two modes and two state variables x : (x, y). The system jumps between two
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modes according to a Markov chain whose transitions are independent of the state x. In each mode,

the system evolves discretely according to a matrix A1 in mode m1 or A2 in m2 where

A1 =

 0.0 2.0

0.1 0.0

 , A2 =

 0.0 0.1

2.0 0.0

 .
The stochastic stability of MJLS has been well studied in the control theory literature [48]. According

to the standard notion of mean square stability (MSS), this stochastic system is unstable, since its

spectral radius is rσ = 2.005 > 1. This means the traces of this system need not converge in L2

norm.

On the other hand, our approach shows that the tail invariance property ♢□(−ϵ ≤ xy ≤ ϵ)

holds almost surely for any given ϵ > 0. In other words, the system’s behaviors almost surely

converge to any given “narrow strip” around the x and the y axes. The tail invariance property is

established by the synthesis of a non-negative α-supermartingale expression m(x, y) : x2y2 via SOS

relaxation, with α = 0.04. In fact, letting xn be the state at the n-th step for n ≥ 0, we have

E(m(xn+1)|xn) = 0.5(2yn)
2(0.1xn)

2 + 0.5(0.1yn)
2(2xn)

2

= 0.04x2ny
2
n = 0.04m(xn).

Hence this proves the tail invariance property, shows that ♢□(−ϵ ≤ xy ≤ ϵ) holds almost surely for

any given ϵ > 0. In other words, that the system’s behaviors almost surely converge to any given

“narrow strip” around the x and the y axes.

Example A.2.3. Consider the following polynomial stochastic system over R2:

xn+1 = 0.5xn + 0.5yn + 0.4w1,n

√
x2n + y2n,

yn+1 = 0.5xn − 0.5yn + 0.4w2,n

√
x2n + y2n,

where w1,n, w2,n ∼ N (0, 1) are i.i.d. Our approach synthesizes a nonnegative α-multiplicative

supermartingale m(x, y) : x2 + y2, where α = 0.82. In fact,

E(m(x′, y′) |x, y) = 0.25((x+ y)2 + (x− y)2) + 0.32(x2 + y2) = 0.82m(x, y).

Hence ♢□(x2 + y2 ≤ ϵ) holds almost surely for any ϵ > 0. In particular, the system almost surely

converges to the origin (which is an equilibrium).
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Example A.2.4. Consider the polynomial stochastic system:

xn+1 = 0.75y4n + 0.1u1,n,

yn+1 = 0.75x4n + 0.1u2,n,

where u1,n, u2,n are i.i.d. uniform random variables on [−1, 1]. It is easy to check that

X = {(x, y) ∈ R2 |x2 + y2 ≤ 1}

is an invariant for the system.

The function m(x, y) : 0.78x2 + 1.23xy + 0.78y2 is a nonnegative α-multiplicative super-

martingale over X with α = 0.75. Hence ♢□(m(x, y) ≤ ϵ) holds almost surely for any ϵ > 0. Note

that m defines a (weighted) norm on R2; the persistence property implies that any sample path of

the given system converges almost surely to the origin.

Example A.2.5. Consider the following stochastic system, a modified example from [152]:

xn+1 := 0.1yn(3x
2
n + 2y2n − 0.5) + 0.1u1,n

√
x2n + y2n,

yn+1 := 0.1yn(2x
2
n + 4xnyn + 3y2n − 0.5) + 0.1u2,n

√
x2n + y2n,

where u1,n, u2,n are i.i.d. uniform random variables on [−
√
3,
√
3]. It is easy to see that 0 is the

only equilibrium and that X = {(x, y) ∈ R2 |x2 + y2 ≤ 1} is an invariant.

The function m(x, y) : 1.55x2 + 2.36xy + 1.34y2 is a nonnegative α-multiplicative super-

martingale over X with α = 0.5. Hence m(x, y) converges almost surely to 0. Note that m defines

a (weighted) norm on R2, showing that any sample path of the given system converges almost surely

to the origin.
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real curVal := unifRand (0 ,500); // current value is drawn random

real tgtVal := 113; // target is fixed for convenience

int count := 0; // Count of number of iterations

// Main iteration loop

while(count <= N || tgtVal - curVal <= 5 || tgtVal -curVal >= -5){

// Difference b/w current and target is the feedback we obtain

delta = (tgtVal - curVal );

// Try and move the pointer by delta units , but

// we add an uniform error between -20 and 20 units.

d = (delta + unifRand ( -20;20));

// update our current value.

curVal = (curVal + d);

// if we threaten to go beyond MAX , truncate it to MAX

if (curVal > MAX) then

curVal = MAX

end;

// If we threaten to go below 0, truncate it to 1

if (curVal < 1) then

curVal = 1

end;

// Increment the counter.

count = (count + 1);

}

Figure A.1: The “value tracking” benchmark program.



140

real x,y, dist , count

while (count <= N) {

c = choice (1:1/4 , 2:1/4, 3:1/4, 4:1/4);

if (x >= 0){

if (y >= 0) {

switch (c){

1: x,dist := (x + r1, dist + r1)

2: y,dist := (y + r1, dist + r1)

3: x,dist := (x - r1, dist - r1)

4: y,dist := (y - r1, dist - r1)

}

} else{

switch (c){

1: x,dist := (x + r1, dist + r1)

2: y,dist := (y + r1, dist - r1)

3: x,dist := (x - r1, dist - r1)

4: y,dist := (y - r1, dist + r1)

}

}

} else {

if (y >= 0) {

switch (c){

1: x,dist := (x - r1, dist + r1)

2: y,dist := (y + r1, dist + r1)

3: x,dist := (x + r1, dist - r1)

4: y,dist := (y - r1, dist - r1)

}

} else{

switch (c){

1: x,dist := (x - r1, dist + r1)

2: y,dist := (y + r1, dist - r1)

3: x,dist := (x + r1, dist - r1)

4: y,dist := (y - r1, dist + r1)

}

}

}

count := count + 1;

}

Figure A.2: 2D random walk example.
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int count ,i

i = 1;

count = 0;

while ( i >= 1 & i <= 2) {

count := count +1 ;

if (flip (4/5)){

i := i + 1 ;

break;

}

}

while ( i >= 2 & i <= 3) {

count := count +1 ;

if (flip (3/5)){

i := i + 1 ;

break;

}

}

while ( i >= 3 & i <= 4) {

count := count +1 ;

if (flip (2/5)){

i := i + 1 ;

break;

}

}

while ( i >= 4 & i <= 5) {

count := count +1 ;

if (flip (1/5)){

i := i + 1 ;

break;

}

}

// Collected all coupons

Figure A.3: Coupon collector problem for n = 5 coupons.
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int count , old , heads

// We need a fair coin for a seed

count := 1

if (flip (1/2)){

old := 1

heads := 1

} else {

old := 0

heads := 0

}

while (true){

if (old <= 0){

if (flip (2/3)){

heads := heads +1

old := 1

} else {

old := 0

}

} else {

if (flip (1/3)){

old := 1

heads := heads +1

} else {

old := 0

}

}

count = count +1;

}

Figure A.4: Fair coin from a biased coin.
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MAX = 10;

cartPos := unifRand (-5.0 ,-3.0);

cartVelo := unifRand (2.0 ,3.0);

pAng := unifRand (1.0 ,5.0);

pAngDer := unifRand ( -0.5 ,0.5);

count := 0;

while (count <= MAX ){

count = count +1;

cartPos = cartPos + 0.01 * cartVelo ;

cartVelo = 0.02* cartPos + 1.03* cartVelo - 0.3* pAng - 0.06* pAngDer

+ unifRand ( -1.0;1.0);

pAng = pAng + 0.01 * pAngDer;

pAngDer = 0.04* cartPos + 0.07* cartVelo - 0.51* pAng + 0.85* pAngDer

+ unifRand ( -0.8;0.8)

}

Figure A.5: Inverted pendulum controller (Discretized) under disturbance.
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nPerCarton := 10;

nLight := 0;

nHeavy := 0;

nMedium := 0;

nPacked := 0;

totalWeight := 0

while (nPacked < nPerCarton) {

obj := choose (NORM: 1/2, HEAVY: 1/4, LIGHT: 1/4 );

switch (obj) {

NORM:

nMedium := nMedium +1;

nPacked := nPacked +1

totalWeight := totalWeight + 0.9 + unifRand (0 ,0.2);

HEAVY:

totalWeight := totalWeight + 1.1 + unifRand (0 ,0.1);

if (nHeavy <= nLight) {

nHeavy := nHeavy +1

nPacked := nPacked +1

}

LIGHT:

totalWeight := totalWeight + 0.8 + unifRand (0 ,0.1);

if (nLight <= nHeavy ){

nLight := nLight +1;

nPacked := nPacked +1

}

}

count := count +1

}

Figure A.6: Packing objects of different weights in a carton.
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real x1, v1, a1

real x2, v2, a3

while (true){

x1 := x1 + v1 + 1/2 * a1

v1 := v1 + a1

a1 := a1 + unifRand (-2,2)

x2 := x2 + v2 + 1/2 * a2

v2 := v2 + a2

if (x1 - x2 <= 8 & a2 >= -4){

a2 := a2 -1;

}

if (x1 - x2 >= 12 & a2 <= 4){

a2 := a2 + 1;

}

}

Figure A.7: Convoy of cars with stochastic leader.
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